[1] Rocken C, Ware R, Van Hove T, et al. Sensing atmospheric water vapor with the global positioning system[J].Geophysical Research Letters, 1993, 20(23): 2631-2634. DOI:10.1029/93GL02935.
[2] Suparta W, Afar J, Alauddin M, et al. Monitoring of GPS precipitable water vapor during the severe flood in Kelantan[J].American Journal of Applied Sciences, 2012, 9(6): 825-831. DOI:10.3844/ajassp.2012.825.831.
[3] Adams D K, Gutman S I, Holub K L, et al. GNSS observations of deep convective time scales in the Amazon[J].Geophysical Research Letters, 2013, 40(11): 2818-2823. DOI:10.1002/grl.50573.
[4] Suparta W, Rahman R. Spatial interpolation of GPS PWV and meteorological variables over the west coast of Peninsular Malaysia during 2013 Klang Valley Flash Flood[J].Atmospheric Research, 2016, 168: 205-219. DOI:10.1016/j.atmosres.2015.09.023.
[5] Askne J, Nordius H. Estimation of tropospheric delay for microwaves from surface weather data[J].Radio Science, 1987, 22(3): 379-386. DOI:10.1029/RS022i003p00379.
[6] Durre I, Vose R S, Wuertz D B. Overview of the integrated global radiosonde archive[J].Journal of Climate, 2006, 19(1): 53-68. DOI:10.1175/jcli3594.1.
[7] Huang L K, Liu L L, Chen H, et al. An improved atmospheric weighted mean temperature model and its impact on GNSS precipitable water vapor estimates for China[J].GPS Solutions, 2019, 23(2): 1-16. DOI:10.1007/s10291-019-0843-1.
[8] Businger S, Chiswell S R, Bevis M, et al. The promise of GPS in atmospheric monitoring[J].Bulletin of the American Meteorological Society, 1996, 77(1): 5-18. DOI: 10.1175/1520-0477(1996)077<0005:TPOGIA>2.0.CO;2.
[9] Bevis M, Businger S, Herring T A, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system[J].Journal of Geophysical Research: Atmospheres, 1992, 97(D14): 15787-15801. DOI:10.1029/92JD01517.
[10] Li Q Z, Yuan L G, Chen P, et al. Global grid-based Tm model with vertical adjustment for GNSS precipitable water retrieval[J].GPS Solutions, 2020, 24(3): 73. DOI:10.1007/s10291-020-00988-x.
[11] Yao Y B, Zhu S, Yue S Q. A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere[J].Journal of Geodesy, 2012, 86(12): 1125-1135. DOI:10.1007/s00190-012-0568-1.
[12] Yao Y B, Xu C Q, Zhang B, et al. GTm-Ⅲ:A new global empirical model for mapping zenith wet delays onto precipitable water vapour[J]. Geophysical Journal International, 2014, 197(1): 202-212. DOI:10.1093/gji/ggu008.
[13] He C Y, Wu S Q, Wang X M, et al. A new voxel-based model for the determination of atmospheric weighted mean temperature in GPS atmospheric sounding[J].Atmospheric Measurement Techniques, 2017, 10(6): 2045-2060. DOI:10.5194/amt-10-2045-2017.
[14] B0;F6;hm J, M0;F6;ller G, Schindelegger M, et al. Development of an improved empirical model for slant delays in the troposphere(GPT2w)[J].GPS Solutions, 2015, 19(3): 433-441. DOI:10.1007/s10291-014-0403-7.
[15] Xu C Q, Yao Y B, Zhang B, et al. Accuracy analysis and test on the weighted mean temperature of the atmosphere grid data offered by GGOS atmosphere[J]. Journal of Geomatics, 2014, 39(4): 13-16. DOI:10.14188/j.2095-6045.2014.04.017. (in Chinese)
[16] Bevis M, Businger S, Chiswell S, et al. GPS meteorology: Mapping zenith wet delays onto precipitable water[J].Journal of Applied Meteorology, 1994, 33(3): 379-386. DOI: 10.1175/1520-0450(1994)0332.0.CO;2.
[17] Ding M H. A neural network model for predicting weighted mean temperature[J].Journal of Geodesy, 2018, 92(10): 1187-1198. DOI:10.1007/s00190-018-1114-6.
[18] Hu W S, Sun L. Neural network based method for compensating model error[J].Journal of Southeast University(English Edition), 2009, 25(3): 400-403.
[19] Zhu M C, Hu W S, Wang L S. Accuracy test and analysis for GPT2w model in China[J].Geomatics and Information Science of Wuhan University, 2019, 44(9): 1304-1311. DOI:10.13203/j.whugis20170387. (in Chinese)
[20] Huang L K, Jiang W P, Liu L L, et al. A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor[J].Journal of Geodesy, 2019, 93(2): 159-176. DOI:10.1007/s00190-018-1148-9.