[1] Tao F, Qi Q L, Liu A, et al. Data-driven smart manufacturing[J]. Journal of Manufacturing Systems, 2018, 48: 157-169. DOI:10.1016/j.jmsy.2018.01.006.
[2] Jones D, Snider C, Nassehi A, et al. Characterising the digital twin: A systematic literature review[J].CIRP Journal of Manufacturing Science and Technology, 2020, 29: 36-52. DOI:10.1016/j.cirpj.2020.02.002.
[3] Lu Y Q, Liu C, Wang K I K, et al. Digital twin-driven smart manufacturing: Connotation, reference model, applications and research issues[J].Robotics and Computer-Integrated Manufacturing, 2020, 61: 101837. DOI:10.1016/j.rcim.2019.101837.
[4] Mourtzis D, Vlachou E, Milas N. Industrial big data as a result of IoT adoption in manufacturing[J]. Procedia CIRP, 2016, 55: 290-295. DOI:10.1016/j.procir.2016.07.038.
[5] Hashem I A T, Yaqoob I, Anuar N B, et al. The rise of “big data” on cloud computing: Review and open research issues[J]. Information Systems, 2015, 47: 98-115. DOI:10.1016/j.is.2014.07.006.
[6] Pivoto D G S, de Almeida L F F, da Rosa Righi R, et al. Cyber-physical systems architectures for industrial Internet of things applications in Industry 4.0: A literature review[J]. Journal of Manufacturing Systems, 2021, 58: 176-192. DOI:10.1016/j.jmsy.2020.11.017.
[7] Neto A A, Deschamps F, da Silva E R, et al. Digital twins in manufacturing: An assessment of drivers, enablers and barriers to implementation[J]. Procedia CIRP, 2020, 93: 210-215. DOI:10.1016/j.procir.2020.04.131.
[8] Schleich B, Anwer N, Mathieu L, et al. Shaping the digital twin for design and production engineering[J]. CIRP Annals, 2017, 66(1): 141-144. DOI:10.1016/j.cirp.2017.04.040.
[9] Lim K Y H, Zheng P, Chen C H, et al. A digital twin-enhanced system for engineering product family design and optimization[J].Journal of Manufacturing Systems, 2020, 57: 82-93. DOI:10.1016/j.jmsy.2020.08.011.
[10] Meraghni S, Terrissa L S, Yue M L, et al. A data-driven digital-twin prognostics method for proton exchange membrane fuel cell remaining useful life prediction[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2555-2564. DOI:10.1016/j.ijhydene.2020.10.108.
[11] Aivaliotis P, Georgoulias K, Arkouli Z, et al. Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance[J]. Procedia CIRP, 2019, 81: 417-422. DOI:10.1016/j.procir.2019.03.072.
[12] Schützer K, de Bertazzi J D A, Sallati C, et al. Contribution to the development of a digital twin based on product lifecycle to support the manufacturing process[J]. Procedia CIRP, 2019, 84: 82-87. DOI:10.1016/j.procir.2019.03.212.
[13] Tao F, Zhang M. Digital twin shop-floor: A new shop-floor paradigm towards smart manufacturing[J].IEEE Access, 2017, 5: 20418-20427. DOI:10.1109/ACCESS.2017.2756069.
[14] Qi Q L, Tao F, Hu T L, et al. Enabling technologies and tools for digital twin[J]. Journal of Manufacturing Systems, 2021, 58: 3-21. DOI:10.1016/j.jmsy.2019.10.001.
[15] Zhuang C B, Miao T, Liu J H, et al. The connotation of digital twin, and the construction and application method of shop-floor digital twin[J]. Robotics and Computer-Integrated Manufacturing, 2021, 68: 102075. DOI:10.1016/j.rcim.2020.102075.
[16] Liu Q, Leng J W, Yan D X, et al. Digital twin-based designing of the configuration, motion, control, and optimization model of a flow-type smart manufacturing system[J]. Journal of Manufacturing Systems, 2021, 58: 52-64. DOI:10.1016/j.jmsy.2020.04.012.
[17] de D’Amico D, Ekoyuncu J, Addepalli S, et al. Conceptual framework of a digital twin to evaluate the degradation status of complex engineering systems[J].Procedia CIRP, 2019, 86: 61-67. DOI:10.1016/j.procir.2020.01.043.
[18] Wu C L, Zhou Y C, Pereia PessF4;a M V, et al. Conceptual digital twin modeling based on an integrated five-dimensional framework and TRIZ function model[J].Journal of Manufacturing Systems, 2021, 58: 79-93. DOI:10.1016/j.jmsy.2020.07.006.
[19] O’Sullivan J, O’Sullivan D, Bruton K. A case-study in the introduction of a digital twin in a large-scale smart manufacturing facility[J].Procedia Manufacturing, 2020, 51: 1523-1530. DOI:10.1016/j.promfg.2020.10.212.
[20] Yildiz E, MF8;ller C, Bilberg A. Virtual factory: Digital twin based integrated factory simulations[J]. Procedia CIRP, 2020, 93: 216-221. DOI:10.1016/j.procir.2020.04.043.
[21] Liu L Y, Du H X, Wang H F, et al. Construction and application of digital twin system in work- shop production process[J]. Computer Integrated Manufacturing System, 2019, 25(6):1536-1545. DOI:10.13196/j.cims.2019.06.021. (in Chinese)
[22] Schroeder G N, Steinmetz C, Pereira C E, et al. Digital twin data modeling with AutomationML and a communication methodology for data exchange[J].IFAC-PapersOnLine, 2016, 49(30): 12-17. DOI:10.1016/j.ifacol.2016.11.115.
[23] Zhu Z X, Liu C, Xu X. Visualisation of the Digital Twin data in manufacturing by using augmented reality[J]. Procedia CIRP, 2019, 81: 898-903. DOI:10.1016/j.procir.2019.03.223.
[24] Qiu S G, Liu S T, Kong D S, et al. Three-dimensional virtual-real mapping of aircraft automatic spray operation and online simulation monitoring[J]. Virtual Reality & Intelligent Hardware, 2019, 1(6): 611-621. DOI:10.1016/j.vrih.2019.10.003.
[25] Oyekan J O, Hutabarat W, Tiwari A, et al. The effectiveness of VMs in developing collaborative strategies between industrial robots and humans[J]. Robotics and Computer-Integrated Manufacturing, 2019, 55: 41-54. DOI:10.1016/j.rcim.2018.07.006.
[26] Zhuang C B, Miao T, Liu J H, et al. The connotation of digital twin, and the construction and application method of shop-floor digital twin[J]. Robotics and Computer-Integrated Manufacturing, 2021, 68: 102075. DOI:10.1016/j.rcim.2020.102075.
[27] Falah M F, Sukaridhoto S, Al Rasyid M U H, et al. Design of virtual engineering and digital twin platform as implementation of cyber-physical systems[J]. Procedia Manufacturing, 2020, 52: 331-336. DOI:10.1016/j.promfg.2020.11.055.
[28] Liu S M, Bao J S, Lu Y Q, et al. Digital twin modeling method based on biomimicry for machining aerospace components[J]. Journal of Manufacturing Systems, 2021, 58: 180-195. DOI:10.1016/j.jmsy.2020.04.014.
[29] Hutabarat W, Oyekan J, Turner C, et al. Combining virtual reality enabled simulation with 3D scanning technologies towards smart manufacturing[C]//2016 Winter Simulation Conference(WSC). Washington, DC, USA, 2016: 2774-2785. DOI:10.1109/WSC.2016.7822314.
[30] Li Z, Wang H F, Liu T T, et al. Design of workshop real-time monitoring system for manufacturing process[J]. Mechanical Design and Manufacturing, 2013, 3: 256-259. DOI:10.19356/j.cnki.1001-3997.2013.03.080. (in Chinese)
[31] Cao W, Jiang P Y, Jiang K Y, et al. Real-time data collection and visual monitoring method for discrete manufacturing workshop based on RFID technology [J]. Computer Integrated Manufacturing System, 2017, 23(2):273-284. DOI:10.13196/j.cims.201 7.02.006. (in Chinese)
[32] Huang Y, Williams B C, Zheng L. Reactive, model-based monitoring in RFID-enabled manufacturing[J]. Computers in Industry, 2011, 62(8/9): 811-819. DOI:10.1016/j.compind.2011.08.003.
[33] Zong X Y, Luan Y, Wang H L, et al. A multi-robot monitoring system based on digital twin[J]. Procedia Computer Science, 2021, 183: 94-99. DOI:10.1016/j.procs.2021.02.035.
[34] Zhao H R, Liu J H, Xiong H, et al. Three-dimensional visualization real-time monitoring method for digital twin workshop[J]. Computer Integrated Manufacturing System, 2019, 25(6): 1432-1443. DOI:10.13196/j.cims.2019.06.011. (in Chinese)
[35] Jiang K, Ke R, Zhao X Y, et al. Research on virtual monitoring system of digital workshop[J]. Aviation Manufacturing Technology, 2016, 20:97-100, 104. DOI:10.160 80/j.issn1671-833x.2016.20.097. (in Chinese)
[36] Zhou C, Sun K T, Li J, et al. Workshop 3D visual monitoring system based on digital twin [J/OL].Computer Integrated Manufacturing System.(2020-08-17)[2021-05-15].http://kns.cnki.net/kcms/detail/11.5946.TP.20200817.0917.008.html.(in Chinese)
[37] Li H, Liu G, Wen X Y, Wang H Q, et al. Industrial safety control system and key technology of digital twin system for human-computer interaction [J]. Computer integration Manufacturing System, 2021, 27(2): 374-389. DOI:10.13196/j.cims.2021.02.006. (in Chinese)
[38] Qiu C, Zhou S E, Liu Z Y, et al. Digital assembly technology based on augmented reality and digital twins: A review[J]. Virtual Reality & Intelligent Hardware, 2019, 1(6): 597-610. DOI:10.1016/j.vrih.2019.10.002.
[39] Ma X, Tao F, Zhang M, et al. Digital twin enhanced human-machine interaction in product lifecycle[J]. Procedia CIRP, 2019, 83: 789-793. DOI:10.1016/j.procir.2019.04.330.
[40] Ke S Q, Xiang F, Zhang Z, et al. A enhanced interaction framework based on VR, AR and MR in digital twin[J]. Procedia CIRP, 2019, 83: 753-758. DOI:10.1016/j.procir.2019.04.103.
[41] Shuai C L, Chen X M, Qiu S G. Application thinking and prospects of virtual reality technology in aviation intelligent manufacturing[J]. Aviation Manufacturing Technology, 2016, 16: 26-33. DOI:10.16080/j.issn1671-833x.2016.16.026. (in Chinese)
[42] Tao F, Liu W R, Liu J H, etc. Digital twin and its application exploration[J]. Computer Integrated Manufacturing System, 2018, 24(1):1-18. DOI:10.13196/j.cims.201 8.01.001. (in Chinese)
[43] Chakraborty B K, Sarma D, Bhuyan M K, et al. Review of constraints on vision-based gesture recognition for human-computer interaction[J]. IET Computer Vision, 2018, 12(1): 3-15. DOI:10.1049/iet-cvi.2017.0052.
[44] Liu Y, Zhao X. Research on industrial digital twin technology system and key technologies [J]. Information and Communication Technology and Policy, 2021, 47(1): 8-13.(in Chinese)