[1] Nguyen S D, Nguyen Q H, Choi S B. A hybrid clustering based fuzzy structure for vibration control—Part 2: An application to semi-active vehicle seat-suspension system[J]. Mechanical Systems and Signal Processing, 2015, 56/57: 288-301. DOI:10.1016/j.ymssp.2014.10.019.
[2] Kulkarni S, Spencer S, Horton D J, et al. Isolation mount assembly: U.S. 11, 001, 306.[P]. 2021-05-11.
[3] Deshmukh S R, Balaji N S K, Saharabhudhe S, et al. Designing of control strategy for high voltage battery isolation in an electric vehicles[C]//2019 IEEE 5th International Conference for Convergence in Technology(I2CT). Bombay, India, 2019: 1-4. DOI:10.1109/I2CT45611.2019.9033891.
[4] Liu Z T, He H W. Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[J]. Applied Energy, 2017, 185: 2033-2044. DOI:10.1016/j.apenergy.2015.10.168.
[5] Griffin M J. Handbook of human vibration[M]. Cambridge: Academic Press, 2012: 25-80.
[6] Friesenbichler B, Nigg B M, Dunn J F. Local metabolic rate during whole body vibration[J]. Journal of Applied Physiology, 2013, 114(10): 1421-1425. DOI:10.1152/japplphysiol.01512.2012.
[7] van Eijk J, Dijksman J F. Plate spring mechanism with constant negative stiffness[J]. Mechanism and Machine Theory, 1979, 14(1): 1-9. DOI:10.1016/0094-114X(79)90036-3.
[8] Lee C M, Goverdovskiy V N, Temnikov A I. Design of springs with “negative” stiffness to improve vehicle driver vibration isolation[J]. Journal of Sound and Vibration, 2007, 302(4/5): 865-874. DOI:10.1016/j.jsv.2006.12.024.
[9] Yang J, Xiong Y P, Xing J T. Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism[J]. Journal of Sound and Vibration, 2013, 332(1): 167-183. DOI:10.1016/j.jsv.2012.08.010.
[10] Han J S, Meng L S, Sun J G. Design and characteristics analysis of a nonlinear isolator using a curved-mount-spring-roller mechanism as negative stiffness element[J]. Mathematical Problems in Engineering, 2018, 2018: 1-15. DOI:10.1155/2018/1359461.
[11] Fan Y Q, Gu P M. A vibration isolation device for elastic elements in parallel of positive and negative stiffness: China, CN8510917 [P].1985-11-01.(in Chinese)
[12] Zhang J Z, Li D, Dong S, et al. A study on ultra-low frequency nonlinear parallel vibration isolation system for precision instruments[J]. China Mechanical Engineering, 2004, 15(1):69-71.(in Chinese)
[13] Ji H, Xiong S S, Yuan Y. Analysis of structural vibration isolation effect based on negative stiffness principle[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2010, 38(2):76-79. DOI:10.13245/j.hust.2010.02.014. (in Chinese)
[14] Li D H, Zhao S G, et al. Dynamic analysis of a QZS vibration isolator with time delay control[J]. Vibration and Shock, 2018, 37(13): 49-55. DOI:10.13465/j.cnki.jvs.2018.13.008. (in Chinese)
[15] Lu Z Q, Brennan M J, Chen L Q. On thetransmissibilities of nonlinear vibration isolation system[J]. Journal of Sound and Vibration, 2016, 375: 28-37. DOI:10.1016/j.jsv.2016.04.032.
[16] Sarlis A A, Pasala D T R, Constantinou M C, et al. Negative stiffness device for seismic protection of structures[J]. Journal of Structural Engineering, 2013, 139(7): 1124-1133. DOI:10.1061/(asce)st.1943-541x.0000616.
[17] Palomares E, Nieto A J, Morales A L, et al. Numerical and experimental analysis of a vibration isolator equipped with a negative stiffness system[J]. Journal of Sound and Vibration, 2018, 414: 31-42. DOI:10.1016/j.jsv.2017.11.006.
[18] Davoodi E, Safarpour P, Pourgholi M, et al. Design and evaluation of vibration reducing seat suspension based on negative stiffness structure[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(21): 4171-4189. DOI:10.1177/0954406220921203.
[19] Dong G X, Zhang X N, Xie S L, et al. Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring[J]. Mechanical Systems and Signal Processing, 2017, 86: 188-203. DOI:10.1016/j.ymssp.2016.09.040.
[20] Yao H L, Chen Z D, Wen B C. Dynamic vibration absorber with negative stiffness for rotor system[J].Shock and Vibration, 2016, 2016: 1-13. DOI:10.1155/2016/5231704.
[21] Carletti E, Pedrielli F. Tri-axial evaluation of the vibration transmitted to the operators of crawler compact loaders[J]. International Journal of Industrial Ergonomics, 2018, 68: 46-56. DOI:10.1016/j.ergon.2018.06.007.
[22] Wickramasinghe V K. Dynamics control approaches to improve vibratory environment of the helicopter aircrew[D]. Ottawa, Canada: Carleton University, 2013.
[23] ISO. Mechanical vibration and shock: evaluation of human exposure to whole-body vibration. Part 1, General requirements: International Standard ISO 2631-1: 1997(E)[S]. Geneva: ISO, 1997.
[24] Knothe K, Stichel S. Human perception of vibrations-ride comfort[M]//Rail Vehicle Dynamics. Cham: Springer International Publishing, 2016: 141-157.
[25] Grabau P J. The simulation of vibrations experienced by patients during helicopter winching and retrieval[D]. Townsville, Australia: James Cook University, 2016.