[1] Rahat A A M, Wang C L, Everson R M, et al. Data-driven multi-objective optimisation of coal-fired boiler combustion systems [J].Applied Energy, 2018, 229: 446-458. DOI: 10.1016/j.apenergy.2018.07.101.
[2] Li Q W, Yao G H. Improved coal combustion optimization model based on load balance and coal qualities [J]. Energy, 2017, 132: 204-212. DOI: 10.1016/j.energy.2017.05.068.
[3] Safdarnejad S M, Tuttle J F, Powell K M. Dynamic modeling and optimization of a coal-fired utility boiler to forecast and minimize NOx and CO emissions simultaneously [J]. Computers and Chemical Engineering, 2019, 124: 62-79. DOI: 10.1016/j.compchemeng.2019.02.001.
[4] Tang Z H, Wu X Y, Cao S X. Modeling of the boiler NOx emission with a data driven algorithm [J]. Journal of Chemical Engineering of Japan, 2018, 51(8): 695-703. DOI: 10.1252/jcej.17we335.
[5] Tang Z H, Wu X Y, Cao S X, et al. Modeling of the boiler NOx emission with a data driven algorithm [J]. Journal of Chemical Engineering of Japan, 2018, 51(8): 695-703. DOI: 10.1252/jcej.17we335.
[6] Zheng L G, Zhang Y G, Yu S J, et al. Use of differential evolution in low NOx combustion optimization of a coal-fired boiler [C]// 2010 Sixth International Conference on Natural Computation. Yantai, China, 2010: 4395-4399. DOI: 10.1109/ICNC.2010.5583524.
[7] Li X, Niu P F, Liu J P. Combustion optimization of a boiler based on the chaos and Lévy flight vortex search algorithm [J]. Applied Mathematical Modelling, 2018, 58: 3-18. DOI: 10.1016/j.apm.2018.01.043.
[8] Ilamathi P, Selladurai V, Balamurugan K, et al. ANN-GA approach for predictive modeling and optimization of NOx emission in a tangentially fired boiler [J]. Clean Technologies and Environmental Policy, 2013, 15: 125-131. DOI: 10.1007/s10098-012-0490-5.
[9] Zhou H, Zheng L G, Cen K F. Computational intelligence approach for NOx emissions minimization in a coal-fired utility boiler [J]. Energy Conversion and Management, 2010, 51: 580-586. DOI: 10.1016/j.enconman.2009.11.002.
[10] Kennedy J, Eberhart R. Particle swarm optimization [C]// International Conference on Neural Networks. Perth, WA, Australia, 1995: 1942-1948. DOI: 10.1109/ICNN.1995.488968.
[11] Han H G, Lu W, Hou Y, et al. An adaptive-PSO-based self-organizing RBF neural network [J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 104-117. DOI: 10.1109/TNNLS.2016.2616413.
[12] Jiang F, Xia H Y, Tran Q A, et al. A new binary hybrid particle swarm optimization with wavelet mutation [J]. Knowledge-Based Systems, 2017, 130: 90-101. DOI: 10.1016/j.knosys.2017.03.032.
[13] Wang F, Zhang H, Li K S, et al. A hybrid particle swarm optimization algorithm using adaptive learning strategy [J]. Information Sciences, 2018, 436-437: 162-177. DOI: 10.1016/j.ins.2018.01.027.
[14] Xia X W, Gui L, Zhan Z H. A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting [J]. Applied Soft Computing, 2018, 67: 126-140. DOI:10.1016/j.asoc.2018.02.042.
[15] Liu Z, Qin Z W, Zhu P, et al. An adaptive switchover hybrid particle swarm optimization algorithm with local search strategy for constrained optimization problems [J]. Engineering Applications of Artificial Intelligence, 2020, 95: 103771. DOI: 10.1016/j.engappai.2020.103771.
[16] Rahnamayan S, Tizhoosh H R, Salama M M A. Opposition-based differential evolution [J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 64-79. DOI: 10.1109/TEVC.2007.894200.
[17] Lin H, He X. A novel opposition-based particle swarm optimization for noisy problems [C]// Proceedings of International Conference on Natural Computation. Haikou, China, 2007: 624-629. DOI: 10.1109/ICNC.2007.119.
[18] Wang H, Li H, Liu Y, et al. Opposition-based particle swarm algorithm with cauchy mutation [C]// IEEE Congress on Evolutionary Computation. Singapore, 2007: 4750-4756. DOI: 10.1109/CEC.2007.4425095.
[19] Wang H, Wu Z J, Rahnamayan S, et al. Enhancing particle swarm optimization using generalized opposition-based learning [J]. Information Sciences, 2011, 181: 4699-4714. DOI: 10.1016/j.ins.2011.03.016.
[20] Tizhoosh H R. Opposition-based learning: A new scheme for machine intelligence [C]// Proceedings of International Conference on Computational Intelligence for Modeling Control and Automation. Vienna, Austria, 2005: 695-701. DOI: 10.1109/CIMCA.2005.1631345.
[21] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications [J]. Neurocomputing, 2006, 70: 489-501. DOI: 10.1016/j.neucom.2005.12.126.
[22] Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997, 11: 341-359. DOI: 10.1023/A:1008202821328.
[23] Bao Z Y, Yu J Z.Intelligent optimization algorithm and its MATLAB example [M]. Beijing: Publishing House of Electronics Industry, 2016:39-42.(in Chinese)