|Table of Contents|

[1] You Miman, Lu Daowei, Wang Shuanhong,. Crossed products for Hopf group-algebras [J]. Journal of Southeast University (English Edition), 2021, 37 (3): 339-342. [doi:10.3969/j.issn.1003-7985.2021.03.015]
Copy

Crossed products for Hopf group-algebras()
Hopf群代数上的交叉积
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
37
Issue:
2021 3
Page:
339-342
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2021-09-20

Info

Title:
Crossed products for Hopf group-algebras
Hopf群代数上的交叉积
Author(s):
You Miman1 Lu Daowei2 Wang Shuanhong3
1School of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
2Department of Mathematics, Jining University, Qufu 273155, China
3School of Mathematics, Southeast University, Nanjing 211189, China
游弥漫1 鹿道伟2 王栓宏3
1华北水利水电大学数学与统计学院, 郑州 450045 ; 2济宁学院数学系, 曲阜 273155 ; 3东南大学数学学院, 南京 211189
Keywords:
Hopf π-algebra cleft extension theorem π-comodule-like algebra group crossed products
Hopf π-代数 cleft 扩张理论 π-余模像代数 群交叉积
PACS:
O153
DOI:
10.3969/j.issn.1003-7985.2021.03.015
Abstract:
First, the group crossed product over the Hopf group-algebras is defined, and the necessary and sufficient conditions for the group crossed product to be a group algebra are given. The cleft extension theory of the Hopf group algebra is introduced, and it is proved that the crossed product of the Hopf group algebra is equivalent to the cleft extension. The necessary and sufficient conditions for the crossed product equivalence of two Hopf groups are then given. Finally, combined with the equivalence theory of the Hopf group crossed product and cleft extension, the group crossed product constructed by the general 2-cocycle as algebra is determined to be isomorphic to the group crossed product of the 2-cocycle with a convolutional invertible map of the 2-cocycle. The unit property of a general 2-cocycle is equivalent to the convolutional invertible map of the 2-cocycle, and the combination condition of the weak action is equivalent to the convolutional invertible map of the 2-cocycle and the combination condition of the weak action. Similarly, crossed product algebra constructed by the general 2-cocycle is isomorphic to the Hopf π-crossed product algebra constructed by the 2-cocycle with a convolutional invertible map.
首先给出了Hopf群代数的群交叉积定义, 并给出了群交叉积是群代数的充分必要条件.引入了Hopf群代数的cleft扩张理论, 并证明了Hopf群代数的交叉积与cleft扩张等价.然后, 给出了2个Hopf群交叉积等价的充分必要条件.最后, 结合Hopf群交叉积与cleft扩张的等价理论得到, 群文叉积一般由2-余循环构造, 作为代数同构于带有卷积可逆映射的2-余循环的群交叉积.一般2-余循环的余单位性质等价于带有卷积可逆映射的2-余循环余单位性质, 通常意义下的2-余循环和弱作用结合条件等价于带有卷积可逆映射的2-余循环及其弱作用结合条件;同时得到, 由一般2-余循环构造的Hopf π-交叉积代数同构于带有卷积可逆映射的2-余循环构造的Hopf π-交叉积代数.

References:

[1] Yukio D, Mitsuhiro T. Cleft comodule algebras for a bialgebra[J]. Communications in Algebra, 1986, 14(5): 801-817. DOI:10.1080/00927878608823337.
[2] Blattner R J, Cohen M, Montgomery S. Crossed products and inner actions of Hopf algebras[J]. Transactions of the American Mathematical Society, 1986, 298(2): 671. DOI:10.1090/s0002-9947-1986-0860387-x.
[3] Buckley M, Fieremans T, Vasilakopoulou C, et al. A Larson-Sweedler theorem for Hopf V-categories[J]. Advances in Mathematics, 2021, 376: 107456. DOI:10.1016/j.aim.2020.107456.
[4] Lu D W, Wang S H. Equivalence of crossed product of linear categories and generalized Maschke theorem [J]. Journal of Southeast University(English Edition)2016, 32(2): 258-260. DOI: 10.3969/j.issn.1003-7985.2016.02.020.
[5] Yan D D, Wang S H. Drinfel’d construction for Hom-Hopf T-coalgebras[J]. International Journal of Mathematics, 2020, 31(8): 2050058. DOI:10.1142/s0129167x20500585.
[6] Gu Y, Wang S H. Hopf quasicomodules and Yetter-Drinfel’d quasicomodules[J]. Communications in Algebra, 2020, 48(1): 351-379. DOI:10.1080/00927872.2019.1646268.
[7] Liu G H, Wang W, Wang S H, et al. A braided T-category over weak monoidal Hom-Hopf algebras[J]. Journal of Algebra and Its Applications, 2020, 19(8): 2050159. DOI:10.1142/s0219498820501595.
[8] Shi G D, Wang S H. Schur-Weyl quasi-duality and(co)triangular Hopf quasigroups[J]. Journal of Mathematical Physics, 2020, 61(5): 051701. DOI:10.1063/5.0005803.
[9] Wang S H. Coquasitriangular Hopf group algebras and Drinfel’d co-doubles[J]. Communications in Algebra, 2006, 35(1): 77-101. DOI:10.1080/00927870601041334.
[10] Wang W, Zhou N, Wang S H. Semidirect products of weak multiplier Hopf algebras: Smash products and smash coproducts[J]. Communications in Algebra, 2018, 46(8): 3241-3261. DOI:10.1080/00927872.2017.1407421.
[11] Zhou N, Wang S H. A duality theorem for weak multiplier Hopf algebra actions[J]. International Journal of Mathematics, 2017, 28(5): 1750032. DOI:10.1142/s0129167x1750032x.
[12] Guo S J, Wang S H. Crossed products of Hopf group-coalgebras [J]. Kodai Mathematical Journal, 2013, 36: 325-342. DOI:10.2298/FIL2004295L.
[13] Guo S J, Wang S H. Morita contexts and partial group Galois extensions for Hopf group coalgebras[J]. Communications in Algebra, 2015, 43(3): 1025-1049. DOI:10.1080/00927872.2013.865037.
[14] Kahng B J, Van Daele A. A class of C-algebraic locally compact quantum groupoids Part Ⅱ. Main theory[J]. Advances in Mathematics, 2019, 354: 106761. DOI:10.1016/j.aim.2019.106761.
[15] Liu L L, Wang S H. Rota-Baxter H-operators and pre-Lie H-pseudoalgebras over a cocommutative Hopf algebra H[J]. Linear and Multilinear Algebra, 2020, 68(11): 2170-2184. DOI:10.1080/03081087.2019.1572710.
[16] Van Daele A, Wang S H. Weak multiplier Hopf algebras Ⅱ: Source and target algebras[J]. Symmetry, 2020, 12(12): 1975. DOI:10.3390/sym12121975.
[17] You M M, Wang S H. A generalized double crossproduct for monoidal Hom-Hopf algebras and the Drinfeld double[J]. Colloquium Mathematicum, 2017, 146(2): 213-238. DOI:10.4064/cm6633-3-2016.

Memo

Memo:
Biographies: You Miman(1984—), female, doctor, lecturer; Lu Daowei(corresponding author), male, doctor, associate professor, ludaowei620@126.com.
Foundation item: The National Natural Science Foundation of China(No. 11871144, 11901240).
Citation: You Miman, Lu Daowei, Wang Shuanhong.Crossed products for Hopf group-algebras[J].Journal of Southeast University(English Edition), 2021, 37(3):339-342.DOI:10.3969/j.issn.1003-7985.2021.03.015.
Last Update: 2021-09-20