|Table of Contents|

[1] Luo Yimei, Zhu Xuefen, Lin Mengying, Yang Fan, et al. Detection of solar radio burst intensitybased on a modified multifactor SVM algorithm [J]. Journal of Southeast University (English Edition), 2022, 38 (1): 20-26. [doi:10.3969/j.issn.1003-7985.2022.01.004]
Copy

Detection of solar radio burst intensitybased on a modified multifactor SVM algorithm()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
38
Issue:
2022 1
Page:
20-26
Research Field:
Electromagnetic Field and Microwave Technology
Publishing date:
2022-03-20

Info

Title:
Detection of solar radio burst intensitybased on a modified multifactor SVM algorithm
Author(s):
Luo Yimei1 Zhu Xuefen1 Lin Mengying1 Yang Fan1 Tu Gangyi2
1School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
2School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Keywords:
global navigation satellite system solar radio burst modified multifactor SVM algorithm detection accuracy
PACS:
TN967.1
DOI:
10.3969/j.issn.1003-7985.2022.01.004
Abstract:
To realize the automatic detection of solar radio burst(SRB)intensity, detection based on a modified multifactor support vector machine(SVM)algorithm is proposed. First, the influence of SRB on global navigation satellite system(GNSS)signals is analyzed. Feature vectors, which can reflect the SRB intensity of stations, are also extracted. SRB intensity is classified according to the solar radio flux, and different class labels correspond to different SRB intensity types. The training samples are composed of feature vectors and their corresponding class labels. Second, training samples are input into SVM classifiers to one-against-one training to obtain the optimal classification models. Finally, the optimal classification model is synthesized into a modified multifactor SVM classifier, which is used to automatically detect the SRB intensity of new data. Experimental results indicate that for historical SRB events, the average accuracy of SRB intensity detection is greater than 90% when the solar incident angle is higher than 20°. Compared with other methods, the proposed method considers many factors with higher accuracy and does not rely on radio telescopes, thereby saving cost.

References:

[1] Zheng Z. Solar radio spectrum image classification based on deep learning [D]. Dalian: Dalian University of Technology, 2019.(in Chinese)
[2] Dong L. Research on evaluation and early warning scheme of solar radio burst jamming communication system [D]. Kunming: Yunnan University, 2016.(in Chinese)
[3] Chen Z, Gao Y, Liu Z. Evaluation of solar radio bursts’ effect on GPS receiver signal tracking within International GPS service network [J]. Radio Science, 2005, 40(3): 1-11. DOI:10. 1029/2004RS003066.
[4] Huang W G, Arer C, Shen H, et al. Impact of intense L-band solar radio burst on GNSS performance and positioning accuracy[J]. Chinese Journal of Radio Science, 2018, 33(1): 1-7. DOI:10.13443/j.cjors.2017062202. (in Chinese)
[5] Berdermann J, Kriegel M, Bany’/s D, et al. Ionospheric response to the X9.3 flare on 6 September 2017 and its implication for navigation services over Europe[J]. Space Weather, 2018, 16(10): 1604-1615. DOI:10.1029/2018sw001933.
[6] Linty N, Minetto A, Dovis F, et al. Effects of phase scintillation on the GNSS positioning error during the September 2017 storm at svalbard[J]. Space Weather, 2018, 16(9): 1317-1329. DOI:10.1029/2018sw001940.
[7] Sato H, Jakowski N, Berdermann J, et al. Solar radio burst events on 6 September 2017 and its impact on GNSS signal frequencies[J]. Space Weather, 2019, 17(6): 816-826. DOI:10.1029/2019sw002198.
[8] Ma L, Chen Z, Xu L, et al. Multimodal deep learning for solar radio burst classification[J]. Pattern Recognition, 2017, 61: 573-582. DOI:10.1016/j.patcog.2016.04.013.
[9] Chen S S, Xu L, Ma L, et al. Convolutional neural network for classification of solar radio spectrum[C]//2017 IEEE International Conference on Multimedia & Expo Workshops. Hong Kong, China, 2017: 198-201. DOI:10.1109/ICMEW.2017.8026227.
[10] Singh D, Sasikumar Raja K, Subramanian P, et al. Automated detection of solar radio bursts using a statistical method[J]. Solar Physics, 2019, 294(8): 1-14. DOI:10.1007/s11207-019-1500-0.
[11] Yang F, Zhu X F, Chen X Y, et al. Intense L-band solar radio bursts detection based on GNSS carrier-to-noise ratio decrease over multi-satellite and multi-station[J].Sensors, 2021, 21(4): 1405. DOI:10.3390/s21041405.
[12] Huang W G, Aa E C, Shen H, et al. Statistical study of GNSS L-band solar radio bursts[J]. GPS Solutions, 2018, 22(4): 1-9. DOI:10.1007/s10291-018-0780-4.
[13] Xue N J. Comparison of multi-class support vector machines[J]. Computer Engineering and Design, 2011, 32(5): 1792-1795. DOI:10.16208/j.issn1000-7024.2011.05.080. (in Chinese)
[14] Niu Q, Li L N. Influence of satellite elevation mask measured by GPS long baseline on positioning accuracy [J]. Zhejiang Agricultural Science, 2016, 57(8): 1316-1318. DOI:10. 16178/j. issn. 0528-9017. 20160850. (in Chinese)

Memo

Memo:
Biographies: Luo Yimei(1997—), female, graduate; Zhu Xuefen(corresponding author), female, doctor, associate professor, zhuxuefen@seu.edu.cn.
Foundation items: The National Key Research and Development Plan of China(No. 2018YFB0505103), the National Natural Science Foundation of China(No. 61873064).
Citation: Luo Yimei, Zhu Xuefen, Lin Mengying, et al.Detection of solar radio burst intensity based on a modified multifactor SVM algorithm[J].Journal of Southeast University(English Edition), 2022, 38(1):20-26.DOI:10.3969/j.issn.1003-7985.2022.01.004.
Last Update: 2022-03-20