[1] Song S P, Qiao M L. Research on ultrasonic testing of plate weld flaw based on NLFM Barker coded excitation method[J]. Chinese Journal of Scientific Instrument, 2020, 41(4): 247-254. DOI:10.19650/j.cnki.cjsi.J2006070. (in Chinese)
[2] Hutchins D, Burrascano P, Davis L, et al. Coded waveforms for optimised air-coupled ultrasonic nondestructive evaluation[J]. Ultrasonics, 2014, 54(7): 1745-1759. DOI:10.1016/j.ultras.2014.03.007.
[3] Newhouse V L, Cathignol D, Chapelon J Y. Introduction to ultrasonic pseudo-random code systems[J]. Progress in Medical Imaging, 1988: 215-226. DOI:10.1007/978-1-4612-3866-9_5.
[4] Polpetta A, Banelli P. Design and performance of Huffman sequences in medical ultrasound coded excitation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(4): 630-647. DOI:10.1109/TUFFC.2012.2242.
[5] Zhao H, L Mo L Y, Gao S K. Barker-coded ultrasound color flow imaging: Theoretical and practical design considerations[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(2): 319-331. DOI:10.1109/TUFFC.2007.246.
[6] Misaridis T, Jensen J A. Use of modulated excitation signals in medical ultrasound. Part Ⅱ: Design and performance for medical imaging applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(2): 192-207. DOI:10.1109/TUFFC.2005.1406546.
[7] Misaridis T, Jensen J A. Use of modulated excitation signals in medical ultrasound. Part Ⅱ: Design and performance for medical imaging applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(2): 192-207. DOI:10.1109/tuffc.2005.1406546.
[8] Vetterli M, Marziliano P, Blu T. Sampling signals with finite rate of innovation[J]. IEEE Transactions on Signal Processing, 2002, 50(6): 1417-1428. DOI:10.1109/TSP.2002.1003065.
[9] Song S P, Shao Y H. Ultrasonic signal finite rate of innovation sampling method and application based on self-adaptive pulse width[J]. Chinese Journal of Scientific Instrument, 2016, 37(7): 1492-1499. DOI:10.19650/j.cnki.cjsi.2016.07.007. (in Chinese)
[10] Fu N, Cao J, Huang G X, et al. Parameter measurement of M-ary PSK signals with finite rate of innovation[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(5): 1271-1283. DOI:10.1109/TIM.2019.2895438.
[11] Huang G X. Research on sampling of pulse sequence with finite rate of innovation based on spectral information[D]. Harbin: Harbin Institute of Technology, 2019.(in Chinese)
[12] Song S P, Jiang Z.Quadrature demodulation based circuit implementation of pulse stream for ultrasonic signal FRI sparse sampling[J]. Measurement Science and Technology, 2017, 28(3): 035005. DOI:10.1088/1361-6501/28/3/035005.
[13] Berent J, Dragotti P L, Blu T. Sampling piecewise sinusoidal signals with finite rate of innovation methods[J]. IEEE Transactions on Signal Processing, 2010, 58(2): 613-625. DOI:10.1109/TSP.2009.2031717.
[14] Baechler G, Scholefield A, Baboulaz L, et al. Sampling and exact reconstruction of pulses with variable width[J]. IEEE Transactions on Signal Processing, 2017, 65(10): 2629-2644. DOI:10.1109/TSP.2017.2669900.
[15] Tur R, Eldar Y C, Friedman Z. Innovation rate sampling of pulse streams with application to ultrasound imaging[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1827-1842. DOI:10.1109/TSP.2011.2105480.
[16] Peng C Q. Research on pipeline ultrasonic testing signal sampling method and application based on finite rate of innovation [D]. Zhenjiang: Jiangsu University, 2015.(in Chinese)
[17] Shi Y J, Zeng L. Signal reconstruction algorithm of finite rate of innovation with matrix pencil and principal component analysis[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, 100(3): 761-768. DOI:10.1587/transfun.e100.a.761.
[18] Edfors O, Sandell M, van de Beek J J, et al. OFDM channel estimation by singular value decomposition[J]. IEEE Transactions on Communications, 1998, 46(7): 931-939. DOI:10.1109/26.701321.
[19] Behar V, Adam D. Parameter optimization of pulse compression in ultrasound imaging systems with coded excitation[J].Ultrasonics, 2004, 42(10): 1101-1109. DOI:10.1016/j.ultras.2004.02.020.
[20] Hikino O, Belkerdid M A, Malocha D C. Code optimization for direct sequence spread spectrum and SAW-matched filter implementation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47(4): 974-983. DOI:10.1109/58.852081.
[21] Han Q B, Wang P, Zheng H. Modified ultrasonic time-of-flight diffraction testing with Barker code excitation for sizing inclined crack[J]. Applied Acoustics, 2018, 140: 153-159. DOI:10.1016/j.apacoust.2018.05.023.
[22] Li M H, Hayward G. Optimal matched filter design for ultrasonic NDE of coarse grain materials[J].AIP Conference Proceedings, 2016, 1706(1): 020011. DOI:10.1063/1.4940457.
[23] Fung A K. A note on the Wiener-Khintchine theorem for autocorrelation[C]//Proceedings of the IEEE. IEEE, 1967: 594-595. DOI:10.1109/PROC.1967.5616.
[24] Kulpa J S. Noise radar sidelobe suppression algorithm using mismatched filter approach[J]. International Journal of Microwave and Wireless Technologies, 2016, 8(6): 865-869. DOI:10.1017/s1759078716000945.
[25] Xu L, Zang H, Zhou S. A design method of phase coded waveform and its mismatched filter [J]. Journal of Xi’an Jiaotong University, 2016, 50(4): 54-59, 75. DOI:10.7652/xjtuxb201604009. (in Chinese)