[1] Han C, Song S, Wang C H. A real-time short-term traffic flow adaptive forecasting method based on ARIMA model[J]. Journal of System Simulation, 2004, 16(7): 1530-1532, 1535. DOI:10.3969/j.issn.1004-731X.2004.07.042. (in Chinese)
[2] Yang G F, Xu R, Qin M, et al. Short-term traffic volume forecasting based on ARMA and Kalman filter[J]. Journal of Zhengzhou University(Engineering Science), 2017, 38(2): 36-40. DOI:10.13705/j.issn.1671-6833.2017.02.009. (in Chinese)
[3] Tian Z D. Chaotic characteristic analysis of network traffic time series at different time scales[J]. Chaos Solitons & Fractals, 2020, 130: 109412. DOI: 10.1016/j.chaos.2019.109412.
[4] Jia X C, Chen X M, Gong J L, et al. Multi-step short-term traffic flow prediction based on chaotic theory [J]. Journal of Transport Information and Safety, 2013, 31(6): 27-32. DOI:10.3963/j.issn.1674-4861.2013.06.006. (in Chinese)
[5] Wu Q. Research and application of short-term traffic flow forcasting based on support vector machine regression[D]. Xi’an: Chang’an University, 2016.(in Chinese)
[6] Zhang L Z, Alharbe N R, Luo G C, et al. A hybrid forecasting framework based on support vector regression with a modified genetic algorithm and a random forest for traffic flow prediction[J]. Tsinghua Science and Technology, 2018, 23(4): 479-492. DOI: 10.26599/TST.2018.9010045.
[7] Ma X L, Tao Z M, Wang Y H, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J].Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197. DOI: 10.1016/j.trc.2015.03.014.
[8] Zhao J D, Gao Y, Yang Z Z, et al. Truck traffic speed prediction under nonrecurrent congestion: Based on optimized deep learning algorithms and GPS data[J]. IEEE Access, 2019, 7: 9116-9127. DOI: 10.1109/ACCESS.2018.2890414.
[9] Li Y Y. Research on the short-term traffic flow forecasting method of based on phase space reconstruction and SVR[D]. Beijing: Beijing Jiaotong University, 2018.(in Chinese)
[10] Matilla García M, Morales I, Rodríguez J M, et al. Selection of embedding dimension and delay time in phase space reconstruction via symbolic dynamics[J]. Entropy, 2021, 23(2): 221-221. DOI: 10.3390/e23020221.
[11] Gao Z K, Jin N D. Complex network from time series based on phase space reconstruction[J]. Chaos, 2009, 19(3): 033137. DOI: 10.1063/1.3227736.
[12] Chen T Q, Guestrin C. XGBoost: A scalable tree boosting system[C]// The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, USA, 2016: 785-794. DOI: 10.1145/2939672.2939785.