[1] Ma N S, Wang J C, Okumoto Y. Out-of-plane welding distortion prediction and mitigation in stiffened welded structures[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(5/6/7/8): 1371-1389. DOI:10.1007/s00170-015-7810-y.
[2] Li Y W, Zou W F, Lee B, et al. Research progress of aluminum alloy welding technology[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(5/6): 1207-1218. DOI:10.1007/s00170-020-05606-1.
[3] Murakawa H, Deng D A, Ma N S, et al. Applications of inherent strain and interface element to simulation of welding deformation in thin plate structures[J]. Computational Materials Science, 2012, 51(1): 43-52. DOI:10.1016/j.commatsci.2011.06.040.
[4] Ma N S, Huang H, Murakawa H. Effect of jig constraint position and pitch on welding deformation[J]. Journal of Materials Processing Technology, 2015, 221: 154-162. DOI:10.1016/j.jmatprotec.2015.02.022.
[5] Ma N S, Cai Z P, Huang H, et al. Investigation of welding residual stress in flash-butt joint of U71Mn rail steel by numerical simulation and experiment[J]. Materials & Design, 2015, 88: 1296-1309. DOI:10.1016/j.matdes.2015.08.124.
[6] Bhatti A A, Barsoum Z, Murakawa H, et al. Influence of thermo-mechanical material properties of different steel grades on welding residual stresses and angular distortion[J]. Materials & Design, 2015, 65: 878-889. DOI:10.1016/j.matdes.2014.10.019.
[7] Chen B Q, Hashemzadeh M, Garbatov Y, et al. Numerical and parametric modeling and analysis of weld-induced residual stresses[J]. International Journal of Mechanics and Materials in Design, 2015, 11(4): 439-453. DOI:10.1007/s10999-014-9269-7.
[8] Xia J, Jin H. Numerical study of welding simulation and residual stress on butt welding of dissimilar thickness of austenitic stainless steel[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(1/2/3/4): 227-235. DOI:10.1007/s00170-016-9738-2.
[9] Cheon J, Na S J. Prediction of welding residual stress with real-time phase transformation by CFD thermal analysis[J]. International Journal of Mechanical Sciences, 2017, 131/132: 37-51. DOI:10.1016/j.ijmecsci.2017.06.046.
[10] Mondal A K, Biswas P, Bag S. Prediction of welding sequence induced thermal history and residual stresses and their effect on welding distortion[J]. Welding in the World, 2017, 61(4): 711-721. DOI:10.1007/s40194-017-0468-3.
[11] Lee J M, Seo H D, Chung H. Efficient welding distortion analysis method for large welded structures[J]. Journal of Materials Processing Technology, 2018, 256: 36-50. DOI:10.1016/j.jmatprotec.2018.01.043.
[12] Ahmad A S, Wu Y X, Gong H, et al. Numerical simulation of thermal and residual stress field induced by three-pass TIG welding of Al 2219 considering the effect of interpass cooling[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(8): 1501-1518. DOI:10.1007/s12541-020-00357-1.
[13] Arunkumar M, Dhinakaran V, Siva Shanmugam N. Numerical prediction of temperature distribution and residual stresses on plasma arc welded thin titanium sheets[J]. International Journal of Modelling and Simulation, 2021, 41(2): 146-162. DOI:10.1080/02286203.2019.1700089.
[14] Pan M H, Tang W C, Xing Y. Welding thermal characteristics analysis with numerical simulation for thin-wall parts assembly under different conditions[J]. Journal of Southeast University(English Edition), 2018, 34(2):199-207. DOI:10.3969/j.issn.1003-7985.2018.02.009.
[15] Majumder H, Maity K P. Predictive analysis on responses in WEDM of titanium grade 6 using general regression neural network(GRNN)and multiple regression analysis(MRA)[J]. Silicon, 2018, 10(4): 1763-1776. DOI:10.1007/s12633-017-9667-1.
[16] Saravanakumar A, Rajeshkumar L, Balaji D, et al. Prediction of wear characteristics of AA2219-Gr matrix composites using GRNN and Taguchi-based approach[J]. Arabian Journal for Science and Engineering, 2020, 45(11): 9549-9557. DOI:10.1007/s13369-020-04817-8.
[17] Pan M H, Tang W C, Xing Y. The deformation analysis, prediction, and experiment verification for thin-wall part assembly based on the fractal theory model with WNNM[J].The International Journal of Advanced Manufacturing Technology, 2017, 92(9/10/11/12): 4145-4159. DOI:10.1007/s00170-017-0497-5.
[18] Yao R H, Zhang W S, Zhang L H. Hybrid methods for short-term traffic flow prediction based on ARIMA-GARCH model and wavelet neural network[J]. Journal of Transportation Engineering, Part A: Systems, 2020, 146(8): 04020086. DOI:10.1061/jtepbs.0000388.
[19] Han Y F, Zeng W D, Zhao Y Q, et al. A study on the prediction of mechanical properties of titanium alloy based on adaptive fuzzy-neural network[J]. Materials & Design, 2011, 32(6): 3354-3360. DOI:10.1016/j.matdes.2011.02.009.
[20] Li W, Qiao J F, Zeng X J, et al. Identification and simplification of T-S fuzzy neural networks based on incremental structure learning and similarity analysis[J]. Fuzzy Sets and Systems, 2020, 394:65-86. DOI:10.1016/j.fss.2019.10.003.