[1] Korteweg D J, de Vries G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1895, 39(240): 422-443. DOI:10.1080/14786449508620739.
[2] Kuo P Y, Wu H M. Numerical solution of K.D.V. equation[J]. Journal of Mathematical Analysis and Applications, 1981, 82(2): 334-345. DOI:10.1016/0022-247X(81)90199-2.
[3] Zhu S H. A scheme with a higher-order discrete invariant for the KdV equation[J]. Applied Mathematics Letters, 2001, 14(1): 17-20. DOI:10.1016/S0893-9659(00)00105-1.
[4] Taha T R, Ablowitz M J. Analytical and numerical aspects of certain nonlinear evolution equations. Ⅰ. Analytical[J]. Journal of Computational Physics, 1984, 55(2): 192-202. DOI:10.1016/0021-9991(84)90002-0.
[5] Shen J Y, Wang X P, Sun Z Z. The conservation and convergence of two finite difference schemes for KdV equations with initial and boundary value conditions[J]. Numerical Mathematics: Theory, Methods and Applications, 2020, 13(1): 253-280. DOI:10.4208/nmtma.oa-2019-0038.
[6] Wang X P, Sun Z Z. A second order convergent difference scheme for the initial-boundary value problem of Korteweg-de Vires equation[J]. Numerical Methods for Partial Differential Equations, 2021, 37(5): 2873-2894. DOI:10.1002/num.22646.
[7] Alexander M E, Morris J L.Galerkin methods applied to some model equations for non-linear dispersive waves[J]. Journal of Computational Physics, 1979, 30(3): 428-451. DOI:10.1016/0021-9991(79)90124-4.
[8] Yan J, Shu C W. A local discontinuous Galerkin method for KdV type equations[J]. SIAM Journal on Numerical Analysis, 2002, 40(2): 769-791. DOI:10.1137/s0036142901390378.
[9] Xu Y, Shu C W. Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(37/38/39/40): 3805-3822. DOI:10.1016/j.cma.2006.10.043.
[10] Shen J. A new dual-petrov-Galerkin method for third and higher odd-order differential equations: Application to the KDV equation[J]. SIAM Journal on Numerical Analysis, 2003, 41(5): 1595-1619. DOI:10.1137/s00361429-02410271.
[11] Feng B F, Wei G W. A comparison of the spectral and the discrete singular convolution schemes for the KdV-type equations[J]. Journal of Computational and Applied Mathematics, 2002, 145(1): 183-188. DOI:10.1016/S0377-0427(01)00543-X.
[12] Zhang Z Q, Ma H P. A rational spectral method for the KdV equation on the half line[J]. Journal of Computational and Applied Mathematics, 2009, 230(2): 614-625. DOI:10.1016/j.cam.2009.01.025.
[13] Dag, Dereli Y. Numerical solutions of KdV equation using radial basis functions[J]. Applied Mathematical Modelling, 2008, 32(4): 535-546. DOI:10.1016/j.apm.2007.02.001.
[14] Shen Q. A meshless method of lines for the numerical solution of KdV equation using radial basis functions[J]. Engineering Analysis With Boundary Elements, 2009, 33(10): 1171-1180. DOI:10.1016/j.enganabound.2009.04.008.
[15] Dehghan M, Shokri A. A numerical method for KdV equation using collocation and radial basis functions[J]. Nonlinear Dynamics, 2007, 50(1/2): 111-120. DOI:10.1007/s11071-006-9146-5.
[16] Bhatta D D, Bhatti M I. Numerical solution of KdV equation using modified Bernstein polynomials[J]. Applied Mathematics and Computation, 2006, 174(2): 1255-1268. DOI:10.1016/j.amc.2005.05.049.
[17] Zhang B Y. Boundary stabilization of the Korteweg-de Vries equation[C]//Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena, 1994: 371-389. DOI:10.1007/978-3-0348-8530-0_21.
[18] Sun H, Sun Z Z. On two linearized difference schemes for Burgers’ equation[J]. International Journal of Computer Mathematics, 2015, 92(6): 1160-1179. DOI:10.1080/00207160.2014.927059.
[19] Mohamad M N B. Exact solutions to the combined KdV and mKdV equation[J]. Mathematical Methods in the Applied Sciences, 1992, 15(2): 73-78. DOI:10.1002/mma.1670150202.