|Table of Contents|

[1] Wang Xuping, Sun Zhizhong,. A second-order convergent and linearized difference schemefor the initial-boundary value problemof the Korteweg-de Vries equation [J]. Journal of Southeast University (English Edition), 2022, 38 (2): 203-212. [doi:10.3969/j.issn.1003-7985.2022.02.013]
Copy

A second-order convergent and linearized difference schemefor the initial-boundary value problemof the Korteweg-de Vries equation()
Korteweg-de Vries方程初边值问题的一个二阶收敛线性化差分格式
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
38
Issue:
2022 2
Page:
203-212
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2022-06-20

Info

Title:
A second-order convergent and linearized difference schemefor the initial-boundary value problemof the Korteweg-de Vries equation
Korteweg-de Vries方程初边值问题的一个二阶收敛线性化差分格式
Author(s):
Wang Xuping Sun Zhizhong
School of Mathematics, Southeast University, Nanjing 210096, China
王旭平 孙志忠
东南大学数学学院, 南京 211189
Keywords:
Korteweg-de Vries(KdV)equation linearized difference scheme conservation convergence
KdV方程 线性化差分格式 守恒性 收敛性
PACS:
O241.82
DOI:
10.3969/j.issn.1003-7985.2022.02.013
Abstract:
To numerically solve the initial-boundary value problem of the Korteweg-de Vries equation, an equivalent coupled system of nonlinear equations is obtained by the method of reduction of order. Then, a difference scheme is constructed for the system. The new variable introduced can be separated from the difference scheme to obtain another difference scheme containing only the original variable. The energy method is applied to the theoretical analysis of the difference scheme. Results show that the difference scheme is uniquely solvable and satisfies the energy conservation law corresponding to the original problem. Moreover, the difference scheme converges when the step ratio satisfies a constraint condition, and the temporal and spatial convergence orders are both two. Numerical examples verify the convergence order and the invariant of the difference scheme. Furthermore, the step ratio constraint is unnecessary for the convergence of the difference scheme. Compared with a known two-level nonlinear difference scheme, the proposed difference scheme has more advantages in numerical calculation.
为求解Korteweg-de Vries方程的初边值问题, 首先利用降阶法得到一个等价的耦合非线性方程组, 再对该方程组建立差分格式.引进的新变量可以从差分格式中分离, 得到仅含有原变量的差分格式, 该差分格式在实际计算中, 每一时间层上只需要解一个四对角的线性方程组, 计算量和存储量都很小.应用能量法对差分格式进行了理论分析, 证明了差分格式是唯一可解的, 且满足一个与原问题相应的能量守恒律.在步长比满足一个限制条件下, 差分格式是收敛的, 时间收敛阶和空间收敛阶都为2.数值算例验证了差分格式的收敛阶和数值解满足能量守恒律, 且步长比的限制性条件对差分格式的收敛性不是必要的.通过与一个已知的两层非线性差分格式进行对比, 所提出的差分格式在数值计算方面更有优势.

References:

[1] Korteweg D J, de Vries G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1895, 39(240): 422-443. DOI:10.1080/14786449508620739.
[2] Kuo P Y, Wu H M. Numerical solution of K.D.V. equation[J]. Journal of Mathematical Analysis and Applications, 1981, 82(2): 334-345. DOI:10.1016/0022-247X(81)90199-2.
[3] Zhu S H. A scheme with a higher-order discrete invariant for the KdV equation[J]. Applied Mathematics Letters, 2001, 14(1): 17-20. DOI:10.1016/S0893-9659(00)00105-1.
[4] Taha T R, Ablowitz M J. Analytical and numerical aspects of certain nonlinear evolution equations. Ⅰ. Analytical[J]. Journal of Computational Physics, 1984, 55(2): 192-202. DOI:10.1016/0021-9991(84)90002-0.
[5] Shen J Y, Wang X P, Sun Z Z. The conservation and convergence of two finite difference schemes for KdV equations with initial and boundary value conditions[J]. Numerical Mathematics: Theory, Methods and Applications, 2020, 13(1): 253-280. DOI:10.4208/nmtma.oa-2019-0038.
[6] Wang X P, Sun Z Z. A second order convergent difference scheme for the initial-boundary value problem of Korteweg-de Vires equation[J]. Numerical Methods for Partial Differential Equations, 2021, 37(5): 2873-2894. DOI:10.1002/num.22646.
[7] Alexander M E, Morris J L.Galerkin methods applied to some model equations for non-linear dispersive waves[J]. Journal of Computational Physics, 1979, 30(3): 428-451. DOI:10.1016/0021-9991(79)90124-4.
[8] Yan J, Shu C W. A local discontinuous Galerkin method for KdV type equations[J]. SIAM Journal on Numerical Analysis, 2002, 40(2): 769-791. DOI:10.1137/s0036142901390378.
[9] Xu Y, Shu C W. Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(37/38/39/40): 3805-3822. DOI:10.1016/j.cma.2006.10.043.
[10] Shen J. A new dual-petrov-Galerkin method for third and higher odd-order differential equations: Application to the KDV equation[J]. SIAM Journal on Numerical Analysis, 2003, 41(5): 1595-1619. DOI:10.1137/s00361429-02410271.
[11] Feng B F, Wei G W. A comparison of the spectral and the discrete singular convolution schemes for the KdV-type equations[J]. Journal of Computational and Applied Mathematics, 2002, 145(1): 183-188. DOI:10.1016/S0377-0427(01)00543-X.
[12] Zhang Z Q, Ma H P. A rational spectral method for the KdV equation on the half line[J]. Journal of Computational and Applied Mathematics, 2009, 230(2): 614-625. DOI:10.1016/j.cam.2009.01.025.
[13] Dag, Dereli Y. Numerical solutions of KdV equation using radial basis functions[J]. Applied Mathematical Modelling, 2008, 32(4): 535-546. DOI:10.1016/j.apm.2007.02.001.
[14] Shen Q. A meshless method of lines for the numerical solution of KdV equation using radial basis functions[J]. Engineering Analysis With Boundary Elements, 2009, 33(10): 1171-1180. DOI:10.1016/j.enganabound.2009.04.008.
[15] Dehghan M, Shokri A. A numerical method for KdV equation using collocation and radial basis functions[J]. Nonlinear Dynamics, 2007, 50(1/2): 111-120. DOI:10.1007/s11071-006-9146-5.
[16] Bhatta D D, Bhatti M I. Numerical solution of KdV equation using modified Bernstein polynomials[J]. Applied Mathematics and Computation, 2006, 174(2): 1255-1268. DOI:10.1016/j.amc.2005.05.049.
[17] Zhang B Y. Boundary stabilization of the Korteweg-de Vries equation[C]//Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena, 1994: 371-389. DOI:10.1007/978-3-0348-8530-0_21.
[18] Sun H, Sun Z Z. On two linearized difference schemes for Burgers’ equation[J]. International Journal of Computer Mathematics, 2015, 92(6): 1160-1179. DOI:10.1080/00207160.2014.927059.
[19] Mohamad M N B. Exact solutions to the combined KdV and mKdV equation[J]. Mathematical Methods in the Applied Sciences, 1992, 15(2): 73-78. DOI:10.1002/mma.1670150202.

Memo

Memo:
Biographies: Wang Xuping(1995—), female, Ph.D. candidate; Sun Zhizhong(corresponding author), male, doctor, professor, zzsun@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No. 11671081).
Citation: Wang Xuping, Sun Zhizhong. A second-order convergent and linearized difference scheme for the initial-boundary value problem of the Korteweg-de Vries equation[J].Journal of Southeast University(English Edition), 2022, 38(2):203-212.DOI:10.3969/j.issn.1003-7985.2022.02.013.
Last Update: 2022-06-20