|Table of Contents|

[1] Chen Liquan, Hu Jie, Gu Pengpeng, et al. Improved PBFT protocol based on phase votingand threshold signature [J]. Journal of Southeast University (English Edition), 2022, 38 (3): 213-218. [doi:10.3969/j.issn.1003-7985.2022.03.001]
Copy

Improved PBFT protocol based on phase votingand threshold signature()
基于阶段投票和门限签名的改进PBFT协议
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
38
Issue:
2022 3
Page:
213-218
Research Field:
Computer Science and Engineering
Publishing date:
2022-09-20

Info

Title:
Improved PBFT protocol based on phase votingand threshold signature
基于阶段投票和门限签名的改进PBFT协议
Author(s):
Chen Liquan1, 2, Hu Jie1, Gu Pengpeng1
1School of Cyber Science and Engineering, Southeast University, Nanjing 210096, China
2Purple Mountain Laboratories for Network and Communication Security, Nanjing 211111, China
陈立全1, 2, 胡杰1, 顾朋鹏1
1东南大学网络空间安全学院, 南京 210096; 2网络通信与安全紫金山实验室, 南京 211111
Keywords:
blockchain practical byzantine fault tolerance(PBFT) threshold signature phase voting
区块链 实用拜占庭容错协议 门限签名 阶段投票
PACS:
TP311
DOI:
10.3969/j.issn.1003-7985.2022.03.001
Abstract:
The communication complexity of the practical byzantine fault tolerance(PBFT)protocol is reduced with the threshold signature technique applied to the consensus process by phase voting PBFT(PV-PBFT). As most communication occurs between the primary node and replica nodes in PV-PVFT, consistency verification is accomplished through threshold signatures, multi-PV, and multiple consensus. The view replacement protocol introduces node weights to influence the election of a primary node, reducing the probability of the same node being elected primary multiple times. The experimental results of consensus algorithms show that compared to PBFT, the communication overhead of PV-PBFT decreases by approximately 90% with nearly one-time improvement in the throughput relative and approximately 2/3 consensus latency, lower than that of the scalable hierarchical byzantine fault tolerance. The communication complexity of the PBFT is O(N2), whereas that of PV-PBFT is only O(N), which implies the significant improvement of the operational efficiency of the blockchain system.
为了降低PBFT协议的通信复杂度, 通过阶段投票实用拜占庭容错协议(PV-PBFT)将阈值签名技术应用于共识过程.大部分通信发生在主节点和副本节点之间, 通过门限签名完成一致性验证, 分阶段多重投票多重共识.视图更换协议引入节点权重影响主节点的选举, 以降低同一节点多次当选主节点的概率.针对共识算法的实验结果表明, 相比传统PBFT, PV-PBFT的通信开销下降约90%, 吞吐量提高了近1倍, 共识时延下降约2/3, 且低于SHBFT的时延.与传统PBFT协议的通信复杂度O(N2)相比, PV-PBFT协议的通信复杂度仅为O(N), 说明区块链系统的运行效率明显提高.

References:

[1] Nakamoto S. Bitcoin: A peer-to-peer electronic cash system [EB/OL].(2008)[2021-10-06] http: //www.bitcoin.org/bitcoin.pdf.
[2] Wood G.Ethereum: A secure decentralised generalised transaction ledger [EB/OL].(2013)[2021-10-06] http://yellowpaper.io/.
[3] Buterin V. A next-generation smart contract and decentralized application platform [EB/OL].(2014-01)[2021-10-06] https://github.com/ethereum/wiki/wiki/White-Paper.
[4] Cachin C. Architecture of the hyperledger blockchain fabric [C]// IBM Research. Zurich, Switzerland, 2016: 310.
[5] Tschorsch F, Scheuermann B. Bitcoin and beyond: A technical survey on decentralized digital currencies [J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 2084-2123. DOI: 10.1109/COMST.2016.2535718
[6] Thai Q T, Yim J C, Yoo T W, et al. Hierarchical Byzantine fault-tolerance protocol for permissioned blockchain systems [J]. The Journal of Supercomputing, 2019, 75(11): 7337-7365. DOI: 10.1007/s11227-019-02939-x
[7] Xiao Y, Zhang N, Lou W, et al.A survey of distributed consensus protocols for blockchain networks [J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1432-1465. DOI: 10.1109/COMST.2020.2969706.
[8] Belotti M, Bozic N, Pujolle G, et al. A vademecum on blockchain technologies: When, which, and how [J]. IEEE Communications Surveys & Tutorials, 2019, 21(4): 3796-3838. DOI: 10.1109/COMST.2019.2928178.
[9] Lao L, Dai X, Xiao B, et al. G-PBFT: A location-based and scalable consensus protocol for IoT-blockchain applications [C]//International Parallel and Distributed Processing Symposium. New Orleans, LA, USA, 2020: 664-673. DOI:10.1109/IPDPS47924.2020.00074.
[10] Ali S, Wang G, White B, et al. Libra critique towards global decentralized financial system [C]//International Conference on Smart City and Informatization. Singapore: Springer, 2019: 661-672. DOI:10.1007/978-981-15-1301-5_52.
[11] Li Y, Qiao L, Lü Z. An optimized byzantine fault tolerance algorithm for consortium blockchain [J]. Peer-to-Peer Networking and Applications, 2021, 14(5): 2826-2839. DOI:10.1007/s12083-021-01103-8
[12] Li W, Feng C, Zhang L, et al. A scalable multi-layer PBFT consensus for blockchain [J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(5): 1146-1160. DOI:10.1109/TPDS.2020.3042392.
[13] Wang Y, Cai S, Lin C, et al. Study of blockchains’s consensus mechanism based on credit[J]. IEEE Access, 2019, 7: 10224-10231. DOI10.1109/ACCESS.2019.2891065
[14] Pease M, Shostak R, Lamport L. Reaching agreement in the presence of faults [J]. Journal of the ACM, 1980, 27(2):228-234. DOI:10.1145/322186.322188
[15] Bamakan S M H, Motavali A, Babaei A B. A survey of blockchain consensus algorithms performance evaluation criteria [J]. Expert Systems with Applications, 2020, 154: 113385. DOI:10.1016/j.eswa.2020.113385

Memo

Memo:
Biography: Chen Liquan(1976—), male, doctor, professor, Lqchen@seu.edu.cn.
Foundation item: The National Key R&D Program of China(No. 2020YFE0200600).
Citation: Chen Liquan, Hu Jie, Gu Pengpeng.Improved PBFT protocol based on phase voting and threshold signature[J].Journal of Southeast University(English Edition), 2022, 38(3):213-218.DOI:10.3969/j.issn.1003-7985.2022.03.001.
Last Update: 2022-09-20