[1] Mayr J, Jedrzejewski J, Uhlmann E, et al. Thermal issues in machine tools[J]. CIRP Annals, 2012, 61(2): 771-791. DOI: 10.1016/ j.cirp. 2012. 05.008.
[2] Bryan J. International status of thermal error research(1990)[J].CIRP Annals, 1990, 39(2): 645-656. DOI:10.1016/s0007-8506(07)63001-7.
[3] Abele E, Altintas Y, Brecher C. Machine tool spindle units[J]. CIRP Annals, 2010, 59(2): 781-802. DOI:10.1016/j.cirp.2010.05.002.
[4] Zhang Y, Wang L F, Zhang Y D, et al. Design and thermal characteristic analysis of motorized spindle cooling system[J].Advances in Mechanical Engineering, 2021, 13(5): 168781402110208. DOI:10.1177/16878140211020878.
[5] Li X H, Liu J Y, Li C, et al. Research on the influence of air-gap eccentricity on the temperature field of a motorized spindle[J].Mechanical Sciences, 2021, 12(1): 109-122. DOI:10.5194/ms-12-109-2021.
[6] Lee J H, Yang S H. Statistical optimization and assessment of a thermal error model for CNC machine tools[J].International Journal of Machine Tools and Manufacture, 2002, 42(1): 147-155. DOI:10.1016/S0890-6955(01)00110-9.
[7] Gao Q, Lu L H, Zhang R, et al. Investigation on the thermal behavior of an aerostatic spindle system considering multi-physics coupling effect[J].The International Journal of Advanced Manufacturing Technology, 2019, 102(9/10/11/12): 3813-3823. DOI:10.1007/s00170-019-03509-4.
[8] Feng G, Xia C H, Sun L, et al. Fast identification of machine tool spindle temperature rise characteristics based on nonlinear prediction[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 341-348. DOI:10. 6041/j.issn.1000-1298. 2015. 06. 049. (in Chinese)
[9] Zhang L X, Li C Q, Li J P, et al. The temperature prediction mode of high speed and high precision motorized spindle[J]. Journal of Mechanical Engineering, 2017, 53(23): 129-136. DOI:10. 3901/JME.2017.23.129. (in Chinese)
[10] Kim S M, Lee S K. Prediction of thermo-elastic behavior in a spindle-bearing system considering bearing surroundings[J].International Journal of Machine Tools and Manufacture, 2001, 41(6): 809-831. DOI:10.1016/S0890-6955(00)00103-6.
[11] Liu Y, Wang X F, Zhu X G, et al. Thermal error prediction of motorized spindle for five-axis machining center based on analytical modeling and BP neural network[J].Journal of Mechanical Science and Technology, 2021, 35(1): 281-292. DOI:10.1007/s12206-020-1228-7.
[12] Jian B L, Guo Y S, Hu C H, et al. Prediction of spindle thermal deformation and displacement using back propagation neural network[J].Sensors and Materials, 2020, 32(1): 431. DOI:10.18494/sam.2020.2606.
[13] Kumar S, Pal S K, Singh R. A novel hybrid model based on particle swarm optimisation and extreme learning machine for short-term temperature prediction using ambient sensors[J]. Sustainable Cities and Society, 2019, 49: 101601. DOI:10.1016/j.scs.2019.101601.
[14] Liu C J, Ding W F, Li Z, et al. Prediction of high-speed grinding temperature of titanium matrix composites using BP neural network based on PSO algorithm[J].The International Journal of Advanced Manufacturing Technology, 2017, 89(5/6/7/8): 2277-2285. DOI:10.1007/s00170-016-9267-z.
[15] Li B, Tian X T, Zhang M. Thermal error modeling of machine tool spindle based on the improved algorithm optimized BP neural network[J].The International Journal of Advanced Manufacturing Technology, 2019, 105(1/2/3/4): 1497-1505. DOI:10.1007/s00170-019-04375-w.
[16] Abdulshahed A M, Longstaff A P, Fletcher S. The application of ANFIS prediction models for thermal error compensation on CNC machine tools[J]. Applied Soft Computing, 2015, 27: 158-168. DOI:10.1016/j.asoc.2014.11.012.
[17] Ku°rková V. Kolmogorov’s theorem and multilayer neural networks[J]. Neural Networks, 1992, 5(3): 501-506. DOI:10.1016/0893-6080(92)90012-8.
[18] Cui Q L, Li Q Y, Li G Y, et al. Globally-optimal prediction-based adaptive mutation particle swarm optimization[J].Information Sciences, 2017, 418/419: 186-217. DOI:10.1016/j.ins.2017.07.038.
[19] Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of ICNN’ 95—International Conference on Neural Networks. Perth, WA, Australia, 1995: 1942-1948. DOI:10.1109/ICNN.1995.488968.
[20] Holland J. Adaptation in natural and artificial systems[M]. Michigan: The University of Michigan Press, 1975:42-56.
[21] Ding F J, Jia X D, Hong T J, et al. Flow stress prediction model of 6061 aluminum alloy sheet based on GA-BP and PSO-BP neural networks [J]. Rare Metal Materials and Engineering, 2020, 49(6):1840-1853.(in Chinese)
[22] Niu H T. Smart safety early warning model of landslide geological hazard based on BP neural network[J]. Safety Science, 2020, 123: 104572. DOI:10.1016/j.ssci.2019.104572.
[23] Zhang L, Zhang X G, Chen H, et al. A robust temperature prediction model of shuttle kiln based on ensemble random vector functional link network [J]. Applied Thermal Engineering, 2019, 150: 99-110. DOI: 10.1016 /j. applthermaleng. 2018.12.092.