[1] Xiong Z M, Chen X, Wang Y W, et al. Shaking table tests on braced reinforced concrete frame structure across the earth fissure under earthquake [J]. The Structural Design of Tall and Special Buildings, 2019, 28: 1-15. DOI: 10.1002/tal.1559.
[2] Fiorino L, Macillo V, Landolfo R. Shake table tests of a full-scale two-story sheathing-braced cold-formed steel building [J]. Engineering Structures, 2017, 151: 633-647. DOI: 10.1016/j.engstruct.2017.08.056.
[3] Lu X L, Zou Y, Lu W S, et al. Shaking table model test on Shanghai World Financial Center Tower [J]. Earthquake Engineering & Structural Dynamics, 2007, 36: 439-457. DOI: 10.1002/eqe.634.
[4] Fan Z M, Yu X J, Zhang Q, et al. Fatigue life estimation for simply-supported pipeline of robots under hybrid excitation [J]. International Journal of Fatigue, 2018, 108: 127-139. DOI: 10.1016/j.ijfatigue.2017.11.002.
[5] Mr9A;nik M, Slavi J, Bolte9E;ar M. Frequency-domain methods for a vibration-fatigue-life estimation-application to real data [J]. International Journal of Fatigue, 2013, 47: 8-17. DOI: 10.1016/j.ijfatigue.2012.07.005.
[6] Lu Z, Chen X Y, Zhang D C, et al. Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation [J].Earthquake Engineering & Structural Dynamics, 2017, 46: 697-714. DOI: 10.1002/eqe.2826.
[7] Sakai M, Kanazawa K, Ohtori Y. Development of high acceleration shaking table system using resonance vibration [C]//Proceedings of the ASME 2016 Pressure Vessels and Piping Conference. Vancouver, Canada, 2016: 1-6.
[8] Tagawa Y, Kajiwara K. Controller development for the E-defense shaking table [J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 2007, 221: 171-181. DOI: 10.1243/09596518JSCE331.
[9] Ogawa N, Ohtani K, Katayama T, et al. Construction of a three-dimensional, large-scale shaking table and development of core technology [J]. Phil Trans R Soc Lond A, 2001, 359:1725-1751. DOI: 10.1098/rsta.2001.0871.
[10] Hirose J, Suzuki K, Yoshika N. Seismic capacity tests of motor operated fans in ventilation systems [C]//Proceedings of the ASME 2011 Pressure Vessels & Piping Division Conference. Baltimore, MA, USA, 2011: 1-9.
[11] Feng Z J, Ruan J, Jin D C, et al. Mechanism analysis of high-frequency single-axis electro-hydraulic shaking table’s resonance phenomenon [J]. Hydraulics Pneumatics & Seals, 2016, 4:20-23. DOI:10.3969/j.issn.1008-0813.2016.04.006. (in Chinese)
[12] Ren Y, Ruan J. Theoretical and experimental investigations of vibration waveforms excited by an electro-hydraulic type exciter for fatigue with a two-dimensional rotary valve [J]. Mechatronics, 2016, 33: 161-172. DOI: 10.1016/j.mechatronics.2015.12.006.
[13] Park Y J, Huh T M, Park D, et al. Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot [J].Bioinspir Biomim, 2014, 9: 036002. DOI: 10.1088/1748-3182/9/3/036002.
[14] Zhou X H, Sun X, Tang K H, et al. Preliminary study on broadband resonance of shaking table based on the compressibility of gas [J]. Journal of Beijing Institute of Technology(English Edition), 2019, 28: 257-264. DOI: 10.15918/j.jbit1004-0579.17189.
[15] Hu Z, Wang X, Yao H X, et al. Theoretical analysis and experimental identification of a vibration isolator with widely-variable stiffness [J]. Journal of Vibration and Acoustics, 2018, 140: 051014. DOI: 10.1115/1.4039537.
[16] Feng X, Jing X J. Human body inspired vibration isolation: Beneficial nonlinear stiffness, nonlinear damping & nonlinear inertia [J]. Mechanical Systems and Signal Processing, 2019, 117: 786-812. DOI: 10.1016/j.ymssp.2018.08.040.
[17] Heo Y J, Lee W C, Kim T, et al. Active micromechanical motion amplifiers using the mechanical resonance modulated by variable stiffness springs [J]. Sensors and Actuators A: Physical, 2012, 180: 97-104. DOI: 10.1016/j.sna.2012.04.018.
[18] Potekin R, Kim S, McFarland D M, et al. A micromechanical mass sensing method based on amplitude tracking within an ultra-wide broadband resonance [J]. Nonlinear Dynamics, 2018, 92: 287-304. DOI: 10.1007/s11071-018-4055-y.
[19] Park J J, Song J B. A nonlinear stiffness safe joint mechanism design for human robot interaction [J]. Journal of Mechanical Design, 2010, 132:0610051. DOI: 10.1115/1.4001666.
[20] Zhou X H, Sun X, Zhao D X, et al. The design and analysis of a novel passive quasi-zero stiffness vibration isolator [J]. Journal of Vibration Engineering & Technologies, 2021, 9:225-245 DOI: 10.1007/s42417-020-00221-6.
[21] Zhou X H, Zhao D X, Sun X, et al. An asymmetric quasi-zero stiffness vibration isolator with long stroke and large bearing capacity [J].Nonlinear Dynamics, 2022, 108: 1903-1930. DOI: 10.1007/s11071-022-07300-1.