|Table of Contents|

[1] Li Gang, Wang Yongwei, Zhou Xinghua, et al. Analysis on resonant shake table withnovel variable stiffness mechanism [J]. Journal of Southeast University (English Edition), 2022, 38 (3): 252-259. [doi:10.3969/j.issn.1003-7985.2022.03.006]
Copy

Analysis on resonant shake table withnovel variable stiffness mechanism()
并联新型变刚度机构的共振振动台分析
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
38
Issue:
2022 3
Page:
252-259
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2022-09-20

Info

Title:
Analysis on resonant shake table withnovel variable stiffness mechanism
并联新型变刚度机构的共振振动台分析
Author(s):
Li Gang1 2 Wang Yongwei3 Zhou Xinghua3 Sun Xiao3 Zhang Jianhai3 Chen Chen1
1 College of Construction Engineering, Jilin University, Changchun 130061, China
2 School of Preparatory Education, Jilin University, Changchun 130012, China
3 School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
李刚1 2 王勇威3 周兴华3 孙晓3 张建海3 陈晨1
1 吉林大学建设工程学院, 长春 130061; 2 吉林大学预科教育学院, 长春 130012; 3 吉林大学机械与航空航天工程学院, 长春 130025
Keywords:
variable stiffness mechanism resonance shake table leaf spring-lever mechanism stiffness soften system
变刚度机构 共振 振动台 板簧杠杆机构 刚度渐软系统
PACS:
TB534.2;TH113.1
DOI:
10.3969/j.issn.1003-7985.2022.03.006
Abstract:
To improve the efficiency and amplify the exciting force of a shake table, a novel variable stiffness mechanism(VSM)constructed by four leaf spring-lever combinations(LSLCs)was designed. Three VSMs were installed in parallel on the traditional hydraulic shake table to constitute a resonant shake table(RST). The static model of the VSM and the dynamic model of the RST were constructed by considering the large deflection of leaf springs and the geometrical nonlinearity of L-shaped levers. The variable stiffness property of LSLCs was analyzed and verified through static experiments. The simulation and vibration experiments on the dynamic properties of the RST prototype were conducted. The results show that compared with traditional shake tables, the RST consumes lower exciting force in a specified frequency bandwidth when outputting the same displacement of vibration. Under a harmonic vibrational excitation, the RST is effective for vibration enhancement using broadband frequency resonance and can save energy to some extent. The broadband resonance technology exhibits considerable potential in practical engineering applications.
为提高振动台效率、放大激振力, 设计了一种由4个板簧-杠杆组合机构(LSLC)构成的新型变刚度机构(VSM), 并将3个VSM并联安装在传统液压振动台上, 构造出共振式振动台(RST).考虑钢板弹簧的大挠度和L形杠杆的几何非线性, 建立了VSM的静力学模型和RST的动力学模型.分析并实验验证了LSLC的变刚度特性, 同时仿真并实验研究了RST的动力学特性.结果表明, 与传统振动台相比, RST在特定频率范围内输出相同的振动位移情况下所需激振力更小.在谐波激励下, RST可以通过宽频共振实现振动增强, 从而在一定程度上降低功耗.宽频共振技术在实际工程中具有较大的应用潜力.

References:

[1] Xiong Z M, Chen X, Wang Y W, et al. Shaking table tests on braced reinforced concrete frame structure across the earth fissure under earthquake [J]. The Structural Design of Tall and Special Buildings, 2019, 28: 1-15. DOI: 10.1002/tal.1559.
[2] Fiorino L, Macillo V, Landolfo R. Shake table tests of a full-scale two-story sheathing-braced cold-formed steel building [J]. Engineering Structures, 2017, 151: 633-647. DOI: 10.1016/j.engstruct.2017.08.056.
[3] Lu X L, Zou Y, Lu W S, et al. Shaking table model test on Shanghai World Financial Center Tower [J]. Earthquake Engineering & Structural Dynamics, 2007, 36: 439-457. DOI: 10.1002/eqe.634.
[4] Fan Z M, Yu X J, Zhang Q, et al. Fatigue life estimation for simply-supported pipeline of robots under hybrid excitation [J]. International Journal of Fatigue, 2018, 108: 127-139. DOI: 10.1016/j.ijfatigue.2017.11.002.
[5] Mr�9A;nik M, Slavi J, Bolte�9E;ar M. Frequency-domain methods for a vibration-fatigue-life estimation-application to real data [J]. International Journal of Fatigue, 2013, 47: 8-17. DOI: 10.1016/j.ijfatigue.2012.07.005.
[6] Lu Z, Chen X Y, Zhang D C, et al. Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation [J].Earthquake Engineering & Structural Dynamics, 2017, 46: 697-714. DOI: 10.1002/eqe.2826.
[7] Sakai M, Kanazawa K, Ohtori Y. Development of high acceleration shaking table system using resonance vibration [C]//Proceedings of the ASME 2016 Pressure Vessels and Piping Conference. Vancouver, Canada, 2016: 1-6.
[8] Tagawa Y, Kajiwara K. Controller development for the E-defense shaking table [J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 2007, 221: 171-181. DOI: 10.1243/09596518JSCE331.
[9] Ogawa N, Ohtani K, Katayama T, et al. Construction of a three-dimensional, large-scale shaking table and development of core technology [J]. Phil Trans R Soc Lond A, 2001, 359:1725-1751. DOI: 10.1098/rsta.2001.0871.
[10] Hirose J, Suzuki K, Yoshika N. Seismic capacity tests of motor operated fans in ventilation systems [C]//Proceedings of the ASME 2011 Pressure Vessels & Piping Division Conference. Baltimore, MA, USA, 2011: 1-9.
[11] Feng Z J, Ruan J, Jin D C, et al. Mechanism analysis of high-frequency single-axis electro-hydraulic shaking table’s resonance phenomenon [J]. Hydraulics Pneumatics & Seals, 2016, 4:20-23. DOI:10.3969/j.issn.1008-0813.2016.04.006. (in Chinese)
[12] Ren Y, Ruan J. Theoretical and experimental investigations of vibration waveforms excited by an electro-hydraulic type exciter for fatigue with a two-dimensional rotary valve [J]. Mechatronics, 2016, 33: 161-172. DOI: 10.1016/j.mechatronics.2015.12.006.
[13] Park Y J, Huh T M, Park D, et al. Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot [J].Bioinspir Biomim, 2014, 9: 036002. DOI: 10.1088/1748-3182/9/3/036002.
[14] Zhou X H, Sun X, Tang K H, et al. Preliminary study on broadband resonance of shaking table based on the compressibility of gas [J]. Journal of Beijing Institute of Technology(English Edition), 2019, 28: 257-264. DOI: 10.15918/j.jbit1004-0579.17189.
[15] Hu Z, Wang X, Yao H X, et al. Theoretical analysis and experimental identification of a vibration isolator with widely-variable stiffness [J]. Journal of Vibration and Acoustics, 2018, 140: 051014. DOI: 10.1115/1.4039537.
[16] Feng X, Jing X J. Human body inspired vibration isolation: Beneficial nonlinear stiffness, nonlinear damping & nonlinear inertia [J]. Mechanical Systems and Signal Processing, 2019, 117: 786-812. DOI: 10.1016/j.ymssp.2018.08.040.
[17] Heo Y J, Lee W C, Kim T, et al. Active micromechanical motion amplifiers using the mechanical resonance modulated by variable stiffness springs [J]. Sensors and Actuators A: Physical, 2012, 180: 97-104. DOI: 10.1016/j.sna.2012.04.018.
[18] Potekin R, Kim S, McFarland D M, et al. A micromechanical mass sensing method based on amplitude tracking within an ultra-wide broadband resonance [J]. Nonlinear Dynamics, 2018, 92: 287-304. DOI: 10.1007/s11071-018-4055-y.
[19] Park J J, Song J B. A nonlinear stiffness safe joint mechanism design for human robot interaction [J]. Journal of Mechanical Design, 2010, 132:0610051. DOI: 10.1115/1.4001666.
[20] Zhou X H, Sun X, Zhao D X, et al. The design and analysis of a novel passive quasi-zero stiffness vibration isolator [J]. Journal of Vibration Engineering & Technologies, 2021, 9:225-245 DOI: 10.1007/s42417-020-00221-6.
[21] Zhou X H, Zhao D X, Sun X, et al. An asymmetric quasi-zero stiffness vibration isolator with long stroke and large bearing capacity [J].Nonlinear Dynamics, 2022, 108: 1903-1930. DOI: 10.1007/s11071-022-07300-1.

Memo

Memo:
Biographies: Li Gang(1986—), male, Ph. D. candidate; Zhou Xinghua(corresponding author), male, doctor, engineer, zhouxinghua@jlu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.41876218, 51905210).
Citation: Li Gang, Wang Yongwei, Zhou Xinghua, et al. Analysis on resonant shake table with novel variable stiffness mechanism[J].Journal of Southeast University(English Edition), 2022, 38(3):252-259.DOI:10.3969/j.issn.1003-7985.2022.03.006.
Last Update: 2022-09-20