[1] Nicholson W K. Lifting idempotents and exchange rings[J].Transactions of the American Mathematical Society, 1977, 229: 269-278. DOI:10.1090/s0002-9947-1977-0439876-2.
[2] Nicholson W K, Varadarajan K. Countable linear transformations are clean[J]. Proceedings of the American Mathematical Society, 1998, 126(1): 61-64. DOI:10.1090/s0002-9939-98-04397-4.
[3] Nicholson W K. Strongly clean rings and fitting’s lemma[J]. Communications in Algebra, 1999, 27(8): 3583-3592. DOI:10.1080/00927879908826649.
[4] Han J, Nicholson W K. Extensions of clean rings[J].Communications in Algebra, 2001, 29(6): 2589-2595. DOI:10.1081/agb-100002409.
[5] Hiremath V A, Hegde S. On strongly clean rings [J]. International Journal of Algebra, 2011, 5(1): 31-36.
[6] Camillo V P, Yu H P. Exchange rings, units and idempotents[J].Communications in Algebra, 1994, 22(12): 4737-4749. DOI:10.1080/00927879408825098.
[7] Chen J L, Cui J. Two questions of L.Va9A; on *-clean rings[J]. Bulletin of the Australian Mathematical Society, 2013, 88(3): 499-505. DOI:10.1017/s0004972713000117.
[8] Cui J, Wang Z. A note on strongly*-clean rings[J]. Journal of the Korean Mathematical Society, 2015, 52(4): 839-851. DOI:10.4134/jkms.2015.52.4.839.
[9] Li C N, Zhou Y Q. On strongly*-clean rings[J]. Journal of Algebra and Its Applications, 2011, 10(6): 1363-1370. DOI:10.1142/s0219498811005221.
[10] Va9A; L. *-clean rings; some clean and almost clean Baer *-rings and von Neumann algebras[J]. Journal of Algebra, 2010, 324(12): 3388-3400. DOI:10.1016/j.jalgebra.2010.10.011.
[11] Zhang H B, Camillo V. On clean rings[J].Communications in Algebra, 2016, 44(6): 2475-2481. DOI:10.1080/00927872.2015.1053899.
[12] Nicholson W K, Zhou Y Q. Rings in which elements are uniquely the sum of an idempotent and a unit[J]. Glasgow Mathematical Journal, 2004, 46(2): 227-236. DOI:10.1017/s0017089504001727.
[13] Drazin M P. Pseudo-inverses in associative rings and semigroups[J]. The American Mathematical Monthly, 1958, 65(7): 506-514. DOI:10.1080/00029890.1958.11991949.
[14] Zhu H H, Zou H L, Patrício P. Generalized inverses and their relations with clean decompositions[J]. Journal of Algebra and Its Applications, 2019, 18(7): 1950133. DOI:10.1142/s0219498819501330.
[15] Liu X J, Wu L L, Yu Y M. The group inverse of the combinations of two idempotent matrices[J]. Linear and Multilinear Algebra, 2011, 59(1): 101-115. DOI:10.1080/03081081003717986.
[16] Cao Q H, Xie T, Zuo K Z. Discussions on the group inverses of combinations of two idempotent matrices [J]. Journal of Wuhan University(Natural Science Edition), 2018, 64(3): 262-268.(in Chinese)
[17] Chen J L. Algebraic theory of generalized inverses: Group inverses and Drazin inverses[J]. Journal of Nanjing University Mathematical Biquarterly, 2021, 38(1): 1-113. DOI:10.3969/j.issn.0469-5097.2021.01.01.
[18] Chen J L, Gao Y F, Li L F. Drazin invertibility in a certain finite-dimensional algebra generated by two idempotents[J]. Numerical Functional Analysis and Optimization, 2020, 41(14): 1804-1817. DOI:10.1080/01630563.2020.1813167.
[19] Chen J L, Zhuang G F, Wei Y M. The Drazin inverse of a sum of morphisms[J]. Acta Mathematica Scientia: Series A, 2009, 29(3): 538-552.(in Chinese)
[20] Cvetkovi’/c-Ili’/c D S, Wei Y M. Algebraic properties of generalized inverses [M]. Singapore: Springer, 2017: 89-93.
[21] Guo L, Chen J L, Zou H L. Representations for the Drazin inverse of the sum of two matrices and its applications[J]. Bulletin of the Iranian Mathematical Society, 2019, 45(3): 683-699. DOI:10.1007/s41980-018-0159-x.
[22] Xie T, Zuo K Z, Zheng L Z. Group inverse of combinations of two idempotent matrices[J]. Journal of Jilin University(Science Edition), 2016, 54(1): 45-53.(in Chinese)
[23] Zhang D C, Mosi’/c D, Guo L. The Drazin inverse of the sum of four matrices and its applications[J]. Linear and Multilinear Algebra, 2020, 68(1): 133-151. DOI:10.1080/03081087.2018.1500518.
[24] Zou H L, Mosi’/c D, Chen J L. The existence and representation of the Drazin inverse of a 2 × 2 block matrix over a ring[J]. Journal of Algebra and Its Applications, 2019, 18(11): 1950212. DOI:10.1142/s0219498819502128.
[25] Zhu H H, Chen J L. Additive and product properties of Drazin inverses of elements in a ring[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40(1): 259-278. DOI:10.1007/s40840-016-0318-2.
[26] Zhou M M, Chen J L, Zhu X. The group inverse and core inverse of sums of two elements in a ring[J]. Communications in Algebra, 2020, 48(2): 676-690. DOI:10.1080/00927872.2019.1654497.
[27] Drazin M P. Commuting properties of generalized inverses[J]. Linear and Multilinear Algebra, 2013, 61(12): 1675-1681. DOI:10.1080/03081087.2012.753593.
[28] Wu C, Zhao L. Central Drazin inverses[J]. Journal of Algebra and Its Applications, 2019, 18(4): 1950065. DOI:10.1142/s0219498819500658.
[29] Zhao L, Wu C, Wang Y. One-sided central Drazin inverses[J]. Linear and Multilinear Algebra, 2022, 70(7): 1193-1206. DOI:10.1080/03081087.2020.1757601.
[30] Bhaskara Rao K P S. The theory of generalized inverses over commutative rings [M]. London: Taylor and Francis, 2002: 144-146.