|Table of Contents|

[1] Li Wende, Chen Jianlong,. Centrally clean elements and central Drazin inverses in a ring [J]. Journal of Southeast University (English Edition), 2022, 38 (3): 315-322. [doi:10.3969/j.issn.1003-7985.2022.03.014]
Copy

Centrally clean elements and central Drazin inverses in a ring()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
38
Issue:
2022 3
Page:
315-322
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2022-09-20

Info

Title:
Centrally clean elements and central Drazin inverses in a ring
Author(s):
Li Wende Chen Jianlong
School of Mathematics, Southeast University, Nanjing 211189, China
Keywords:
centrally clean element centrally clean ring central Drazin inverse central group inverse
PACS:
O153.3
DOI:
10.3969/j.issn.1003-7985.2022.03.014
Abstract:
Element a in ring R is called centrally clean if it is the sum of central idempotent e and unit u. Moreover, a=e+u is called a centrally clean decomposition of a and R is called a centrally clean ring if every element of R is centrally clean. First, some characterizations of centrally clean elements are given. Furthermore, some properties of centrally clean rings, as well as the necessary and sufficient conditions for R to be a centrally clean ring are investigated. Centrally clean rings are closely related to the central Drazin inverses. Then, in terms of centrally clean decomposition, the necessary and sufficient conditions for the existence of central Drazin inverses are presented. Moreover, the central cleanness of special rings, such as corner rings, the ring of formal power series over ring R, and a direct product ∏Rα of ring Rα, is analyzed. Furthermore, the central group invertibility of combinations of two central idempotents in the algebra over a field is investigated. Finally, as an application, an example that lists all invertible, central group invertible, group invertible, central Drazin invertible elements, and centrally clean elements of the group ring Z2S3 is given.

References:

[1] Nicholson W K. Lifting idempotents and exchange rings[J].Transactions of the American Mathematical Society, 1977, 229: 269-278. DOI:10.1090/s0002-9947-1977-0439876-2.
[2] Nicholson W K, Varadarajan K. Countable linear transformations are clean[J]. Proceedings of the American Mathematical Society, 1998, 126(1): 61-64. DOI:10.1090/s0002-9939-98-04397-4.
[3] Nicholson W K. Strongly clean rings and fitting’s lemma[J]. Communications in Algebra, 1999, 27(8): 3583-3592. DOI:10.1080/00927879908826649.
[4] Han J, Nicholson W K. Extensions of clean rings[J].Communications in Algebra, 2001, 29(6): 2589-2595. DOI:10.1081/agb-100002409.
[5] Hiremath V A, Hegde S. On strongly clean rings [J]. International Journal of Algebra, 2011, 5(1): 31-36.
[6] Camillo V P, Yu H P. Exchange rings, units and idempotents[J].Communications in Algebra, 1994, 22(12): 4737-4749. DOI:10.1080/00927879408825098.
[7] Chen J L, Cui J. Two questions of L.Va�9A; on *-clean rings[J]. Bulletin of the Australian Mathematical Society, 2013, 88(3): 499-505. DOI:10.1017/s0004972713000117.
[8] Cui J, Wang Z. A note on strongly*-clean rings[J]. Journal of the Korean Mathematical Society, 2015, 52(4): 839-851. DOI:10.4134/jkms.2015.52.4.839.
[9] Li C N, Zhou Y Q. On strongly*-clean rings[J]. Journal of Algebra and Its Applications, 2011, 10(6): 1363-1370. DOI:10.1142/s0219498811005221.
[10] Va�9A; L. *-clean rings; some clean and almost clean Baer *-rings and von Neumann algebras[J]. Journal of Algebra, 2010, 324(12): 3388-3400. DOI:10.1016/j.jalgebra.2010.10.011.
[11] Zhang H B, Camillo V. On clean rings[J].Communications in Algebra, 2016, 44(6): 2475-2481. DOI:10.1080/00927872.2015.1053899.
[12] Nicholson W K, Zhou Y Q. Rings in which elements are uniquely the sum of an idempotent and a unit[J]. Glasgow Mathematical Journal, 2004, 46(2): 227-236. DOI:10.1017/s0017089504001727.
[13] Drazin M P. Pseudo-inverses in associative rings and semigroups[J]. The American Mathematical Monthly, 1958, 65(7): 506-514. DOI:10.1080/00029890.1958.11991949.
[14] Zhu H H, Zou H L, Patrício P. Generalized inverses and their relations with clean decompositions[J]. Journal of Algebra and Its Applications, 2019, 18(7): 1950133. DOI:10.1142/s0219498819501330.
[15] Liu X J, Wu L L, Yu Y M. The group inverse of the combinations of two idempotent matrices[J]. Linear and Multilinear Algebra, 2011, 59(1): 101-115. DOI:10.1080/03081081003717986.
[16] Cao Q H, Xie T, Zuo K Z. Discussions on the group inverses of combinations of two idempotent matrices [J]. Journal of Wuhan University(Natural Science Edition), 2018, 64(3): 262-268.(in Chinese)
[17] Chen J L. Algebraic theory of generalized inverses: Group inverses and Drazin inverses[J]. Journal of Nanjing University Mathematical Biquarterly, 2021, 38(1): 1-113. DOI:10.3969/j.issn.0469-5097.2021.01.01.
[18] Chen J L, Gao Y F, Li L F. Drazin invertibility in a certain finite-dimensional algebra generated by two idempotents[J]. Numerical Functional Analysis and Optimization, 2020, 41(14): 1804-1817. DOI:10.1080/01630563.2020.1813167.
[19] Chen J L, Zhuang G F, Wei Y M. The Drazin inverse of a sum of morphisms[J]. Acta Mathematica Scientia: Series A, 2009, 29(3): 538-552.(in Chinese)
[20] Cvetkovi’/c-Ili’/c D S, Wei Y M. Algebraic properties of generalized inverses [M]. Singapore: Springer, 2017: 89-93.
[21] Guo L, Chen J L, Zou H L. Representations for the Drazin inverse of the sum of two matrices and its applications[J]. Bulletin of the Iranian Mathematical Society, 2019, 45(3): 683-699. DOI:10.1007/s41980-018-0159-x.
[22] Xie T, Zuo K Z, Zheng L Z. Group inverse of combinations of two idempotent matrices[J]. Journal of Jilin University(Science Edition), 2016, 54(1): 45-53.(in Chinese)
[23] Zhang D C, Mosi’/c D, Guo L. The Drazin inverse of the sum of four matrices and its applications[J]. Linear and Multilinear Algebra, 2020, 68(1): 133-151. DOI:10.1080/03081087.2018.1500518.
[24] Zou H L, Mosi’/c D, Chen J L. The existence and representation of the Drazin inverse of a 2 × 2 block matrix over a ring[J]. Journal of Algebra and Its Applications, 2019, 18(11): 1950212. DOI:10.1142/s0219498819502128.
[25] Zhu H H, Chen J L. Additive and product properties of Drazin inverses of elements in a ring[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40(1): 259-278. DOI:10.1007/s40840-016-0318-2.
[26] Zhou M M, Chen J L, Zhu X. The group inverse and core inverse of sums of two elements in a ring[J]. Communications in Algebra, 2020, 48(2): 676-690. DOI:10.1080/00927872.2019.1654497.
[27] Drazin M P. Commuting properties of generalized inverses[J]. Linear and Multilinear Algebra, 2013, 61(12): 1675-1681. DOI:10.1080/03081087.2012.753593.
[28] Wu C, Zhao L. Central Drazin inverses[J]. Journal of Algebra and Its Applications, 2019, 18(4): 1950065. DOI:10.1142/s0219498819500658.
[29] Zhao L, Wu C, Wang Y. One-sided central Drazin inverses[J]. Linear and Multilinear Algebra, 2022, 70(7): 1193-1206. DOI:10.1080/03081087.2020.1757601.
[30] Bhaskara Rao K P S. The theory of generalized inverses over commutative rings [M]. London: Taylor and Francis, 2002: 144-146.

Memo

Memo:
Biographies: Li Wende(1993—), male, Ph.D. candidate; Chen Jianlong(corresponding author), male, doctor, professor, jlchen@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No. 12171083, 11871145, 12071070), the Qing Lan Project of Jiangsu Province.
Citation: Li Wende, Chen Jianlong. Centrally clean elements and central Drazin inverses in a ring[J].Journal of Southeast University(English Edition), 2022, 38(3):315-322.DOI:10.3969/j.issn.1003-7985.2022.03.014.
Last Update: 2022-09-20