|Table of Contents|

[1] Liang Wenqing, , Lei Gang, et al. Impact of a background velocity field on solidification growthof single-crystal nuclei using the PF-LBM [J]. Journal of Southeast University (English Edition), 2022, 38 (4): 373-382. [doi:10.3969/j.issn.1003-7985.2022.04.006]
Copy

Impact of a background velocity field on solidification growthof single-crystal nuclei using the PF-LBM()
基于PF-LBM背景速度场对单晶核凝固生长的影响
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
38
Issue:
2022 4
Page:
373-382
Research Field:
Energy and Power Engineering
Publishing date:
2022-12-20

Info

Title:
Impact of a background velocity field on solidification growthof single-crystal nuclei using the PF-LBM
基于PF-LBM背景速度场对单晶核凝固生长的影响
Author(s):
Liang Wenqing 1 2 3 Lei Gang2 Xun Qining4 Shu Zhiyong1 3 Wang Tianxiang2Qian Hua1 Zhao Dongliang1 Zheng Xiaohong1
1 School of Energy and Environment, Southeast University, Nanjing 210096, China
2 State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing 100028, China
3 State Key Laboratory of Technologies in Space Cryogenic Propellants-SEU Research Center, Nanjing 210096, China
4 Shandong Institute of Non-metallic Materials, Jinan 250031, China
梁文清 1 2 3 雷刚2 荀其宁4 疏志勇 1 3 王天祥 2钱华 1 赵东亮 1 郑晓红1
1 东南大学能源与环境学院, 南京 210096; 2 航天低温推进剂技术国家重点实验室, 北京 100028; 3 航天低温推进剂技术国家重点实验室东南大学基地, 南京 210096; 4 山东非金属材料研究所, 济南 250031
Keywords:
single-crystal nucleus coupled velocity field simulation lattice Boltzmann method
单晶核 耦合速度场 模拟 格子玻尔兹曼方法
PACS:
TK91
DOI:
10.3969/j.issn.1003-7985.2022.04.006
Abstract:
To promote/inhibit ice formation in the natural environment and industrial systems, the growth and evolution process of ice single-crystal nuclei were simulated using the phase field-lattice Boltzmann method(PF-LBM), and the influence of a background flow field on the growth of single-crystal nucleus dendrites was also analyzed. The results show that the flow field makes dendrite growth asymmetric. The growth of dendrites is more developed on the upstream side than on the downstream side. The dendrite tip growth rate and tip radius are greater on the upstream side than on the downstream side. The solid phase ratio is greater with a background flow field than without one. The higher the flow velocity is, the more developed the dendrites on the upstream side, the faster the dendrites grow, and the higher the dendrite tip growth rate. The dendrites on the backflow side have a lower flow rate and a lower degree of supercooling than those on the upstream side, which inhibits the solidification process, the growth rate is slow, and the dendrites are underdeveloped.
在自然环境和工业系统中为了促进/抑制冰的形成, 采用相场-粒子玻尔兹曼方法模拟了冰单晶核的生长演化过程, 并分析背景流场条件对单晶核晶枝生长的影响.结果表明:背景流场使枝晶生长呈现不对称形状, 即迎流侧的单晶核晶枝远比背流侧晶枝发达;迎流侧晶枝顶端生长速率远大于背流侧的枝晶生长速率, 上游侧的晶枝尖端半径大于背流侧的晶枝尖端半径;在有背景流场条件下, 单晶核的固相比大于无背景流场.背景流场的流速越高, 迎流侧枝晶越发达, 枝晶生长速度越快, 枝晶尖端生长速度也越快.背流侧的流场流速较低, 过冷度低于迎流侧, 抑制了凝固过程, 生长速度较慢, 枝晶生长受到抑制.

References:

[1] Qian J F, Zhang J L. Feasibility analysis of urban sewage source heat pump system with freezing latent heat collection[J].Journal of Southeast University(English Edition), 2010(2): 324-326. DOI: 10.3969/j.issn.1003-7985.2010.02.040.
[2] Cao Y H, Tan W Y, Wu Z L. Aircraft icing: An ongoing threat to aviation safety[J].Aerospace Science and Technology, 2018, 75: 353-385. DOI:10.1016/j.ast.2017.12.028.
[3] Li Q, Sun G X, Luo S, et al. Evaluation of rutting and low-temperature cracking resistances of warm-mix recycled asphalt binders under the secondary aging condition[J]. Journal of Southeast University(English Edition), 2020, 36(1): 81-87. DOI: 10.3969/j.issn.1003-7985.2020.01.011.
[4] Huige N. Nucleation and growth of ice crystals from water and sugar solutions in continuous sturred tank crystallizers[D]. Eindhoven, The Kingdom of the Netherlands: Eindhoven University of Technology, 1972.
[5] Yokoyama E, Yoshizaki I, Shimaoka T, et al. Measurements of growth rates of an ice crystal from supercooled heavy water under microgravity conditions: Basal face growth rate and tip velocity of a dendrite[J]. The Journal of Physical Chemistry B, 2011, 115(27): 8739-8745. DOI:10.1021/jp110634t.
[6] Ninagawa T, Eguchi A, Kawamura Y, et al. A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera[J]. Cryobiology, 2016, 73(1): 20-29. DOI:10.1016/j.cryobiol.2016.06.003.
[7] Kielar J J, Lemaitre P, Gobin C, et al. Simultaneous interferometric in-focus and out-of-focus imaging of ice crystals[J]. Optics Communications, 2016, 372: 185-195. DOI:10.1016/j.optcom.2016.04.004.
[8] Yasuda H, Yamamoto Y, Nakatsuka N, et al.In situ observation of solidification phenomena in Al-Cu and Fe-Si-Al alloys[J]. International Journal of Cast Metals Research, 2009, 22(1/2/3/4): 15-21. DOI:10.1179/136404609X368118.
[9] Guo Q, Cheng P. Numerical investigations of six-fold dendritic icing process in subcooled water subject to natural and forced convective environments[J].International Journal of Heat and Mass Transfer, 2019, 145: 118658. DOI:10.1016/j.ijheatmasstransfer.2019.118658.
[10] Kobayashi R. Modeling and numerical simulations of dendritic crystal growth[J].Physica D: Nonlinear Phenomena, 1993, 63(3/4): 410-423. DOI:10.1016/0167-2789(93)90120-P.
[11] Wheeler A A, Murray B T, Schaefer R J. Computation of dendrites using a phase field model[J]. Physica D: Nonlinear Phenomena, 1993, 66(1/2): 243-262. DOI:10.1016/0167-2789(93)90242-S.
[12] Penrose O, Fife P C. Thermodynamically consistent models of phase-field type for the kinetic of phase transitions[J].Physica D: Nonlinear Phenomena, 1990, 43(1): 44-62. DOI:10.1016/0167-2789(90)90015-H.
[13] Wheeler A A, Boettinger W J, McFadden G B. Phase-field model for isothermal phase transitions in binary alloys[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1992, 45(10): 7424-7439. DOI:10.1103/physreva.45.7424.
[14] Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys[J].Physical Review E, 1999, 60(6): 7186-7197. DOI:10.1103/physreve.60.7186.
[15] Qin R S, Wallach E R, Thomson R C. A phase-field model for the solidification of multicomponent and multiphase alloys[J].Journal of Crystal Growth, 2005, 279(1/2): 163-169. DOI:10.1016/j.jcrysgro.2005.02.005.
[16] Luo S, Wang P, Wang W L, et al. PF-LBM modelling of dendritic growth and motion in an undercooled melt of Fe-C binary alloy[J].Metallurgical and Materials Transactions B, 2020, 51(5): 2268-2284. DOI:10.1007/s11663-020-01925-6.
[17] Kan A K, Mao S, Wang N, et al. Simulation and experimental study on thermal conductivity ofnano-granule porous material based on lattice-boltzmann method[J]. Journal of Thermal Science, 2021, 30(1): 248-256. DOI:10.1007/s11630-019-1218-1.
[18] Taher M A, Kim H D, Lee Y W. Study of thermal and hydraulic performances of circular and square ribbed rough microchannels using LBM[J].Journal of Thermal Science, 2015, 24(6): 549-556. DOI:10.1007/s11630-015-0821-z.
[19] Xin F, Li X F, Xu M, et al. Simulation of gas exothermic chemical reaction in porous media reactor with latticeBoltzmann method[J]. Journal of Thermal Science, 2013, 22(1): 42-47. DOI:10.1007/s11630-013-0590-5.
[20] Yang B, Wu W, Li M D, et al. A multiple-relaxation-time lattice Boltzmann model for natural convection in a hydrodynamically and thermally anisotropic porous medium under local thermal non-equilibrium conditions[J]. Journal of Thermal Science, 2020, 29(3): 609-622. DOI:10.1007/s11630-020-1169-6.
[21] Alexandrov D V, Galenko P K. Dendritic growth with the six-fold symmetry: Theoretical predictions and experimental verification[J]. Journal of Physics and Chemistry of Solids, 2017, 108: 98-103. DOI:10.1016/j.jpcs.2017.04.016.
[22] McNamara G R, Zanetti G. Use of the Boltzmann equation to simulate lattice gas automata[J].Physical Review Letters, 1988, 61(20): 2332-2335. DOI:10.1103/PhysRevLett.61.2332.
[23] Zou Q S, He X Y. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J].Physics of Fluids, 1997, 9(6): 1591-1598. DOI:10.1063/1.869307.
[24] Bouissou P, Perrin B, Tabeling P. Influence of an external flow on dendritic crystal growth[J]. Physical Review A, 1989, 40(1): 509-510. DOI:10.1103/physreva.40.509.
[25] Lipton J, Glicksman M E, Kurz W. Dendritic growth into undercooled alloy metals[J]. Materials Science and Engineering, 1984, 65(1): 57-63. DOI:10.1016/0025-5416(84)90199-X.
[26] Tao L R, Hua Z Z. A microscopic study of the crystallization in cryoprotectent agents[J]. Journal of Engineering Thermophysics, 2001(4): 481-484. DOI:10.3321/j.issn:0253-231X.2001.04.025. (in Chinese)
[27] Koo K K, Ananth R, Gill W N. Thermal convection, morphological stability and the dendritic growth of crystals[J]. AIChE Journal, 1992, 38(6): 945-954. DOI:10.1002/aic.690380615.
[28] Sakane S, Takaki T, Ohno M, et al. Three-dimensional morphologies of inclined equiaxed dendrites growing under forced convection by phase-field-lattice Boltzmann method[J]. Journal of Crystal Growth, 2018, 483: 147-155. DOI:10.1016/j.jcrysgro.2017.11.029.

Memo

Memo:
Biographies: Liang Wenqing(1977—), male, doctor, lecturer; Zheng Xiaohong(corresponding author), female, doctor, associate professor, xhzheng@seu.edu.cn.
Foundation item: The National Key Research and Development Program of China(No.2020YFB1506203).
Citation: Liang Wenqing, Lei Gang, Xun Qining, et al. Impact of a background velocity field on solidification growth of single-crystal nuclei using the PF-LBM[J].Journal of Southeast University(English Edition), 2022, 38(4):373-382.DOI:10.3969/j.issn.1003-7985.2022.04.006.
Last Update: 2022-12-20