[1] Yang G, Wang Y, Li X. Prediction of the NOx emissions from thermal power plant using long-short term memory neural network[J]. Energy, 2020, 192:116597. DOI:10.1016/j.energy.2019.116597.
[2] Kang J, Niu Y, Hu B. Dynamic modeling of SCR denitration systems in coal-fired power plants based on a Bi-directional long short-term memory method[J]. Process Saf Environ Prot, 2021, 192: 867-878. DOI:10.1016/j.psep.2021.02.009.
[3] Fu J, Xiao H, Wang H, et al. Control strategy for denitrification efficiency of coal-fired power plant based on deep reinforcement learning[J]. IEEE Access, 2020, 8: 65127-65136. DOI:10.1109/ACCESS.2020.2985233.
[4] Dong Z, Ma N. A novel nonlinear partial least square integrated with error-based extreme learning machine[J]. IEEE Access, 2019, 7: 59903-59912. DOI:10.1109/ACCESS.2019.2911741.
[5] Wu X, Shen J, Li Y et al. Steam power plant configuration, design and control[J].Wiley Interdiscip Rev: Energy Environ, 2015, 4: 537-563.
[6] Niu Y, Pan Y, Huang W. Artificial fish swarm and feedback linearization of flue gas denitration control based on neural network[J]. Journal of System Simulation, 2018, 30:2707-2714.(in Chinese)
[7] Pham B, Shirzadi A, Bui D, et al. A hybrid machine learning ensemble approach based on a radial basis function neural network and rotation forest for landslide susceptibility modeling: A case study in the Himalayan area[J]. India Int J Sediment Res, 2018, 2: 157-170. DOI:10.1016/j.ijsrc.2017.09.008.
[8] Huang G, Zhu Q, Siew C. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70: 489-501. DOI:10.1016/j.neucom.2005.12.126.
[9] Huang G, Wang D, Lan Y. Extreme learning machines: a survey[J]. Int J Mach Learn Cybern, 2011, 2: 107-122. DOI:10.1007/s13042-011-0019-y.
[10] Dong Z, Ma N, Meng L.Model improvement for boiler NOx emission based on DEQPSO algorithm[J]. Journal of Chinese Society of Power Engineering, 2019, 39: 191-197.(in Chinese)
[11] Kadlec P, Grbic R, Gabrys B. Review of adaptation mechanisms for data-driven soft sensors[J]. Comput Chem Eng, 2011, 35: 1-24.
[12] Geladi P. Notes on the history and nature of partial least squares(PLS)modeling[J]. J Chemom, 1988, 2: 231-246. DOI:10.1002/cem.1180020403.
[13] SjF6;vall H, Blint R, Gopinath, A. A kinetic model for the selective catalytic reduction of NOx with NH3 over an Fe-zeolite catalyst[J]. Ind Eng Chem Res, 2010, 49: 39-52. DOI:10.1021/ie9003464.
[14] Liu J, Qin T, Yang T, et al. SCR denitration system modeling based on self-adaptive multi-scale kernel partial least squares[J]. Proceedings of the CSEE, 2015, 35: 6083-6088.(in Chinese)
[15] Feng Z, Niu W, Cheng C. Multi-objective quantum-behaved particle swarm optimization for economic environmental hydrothermal energy system scheduling[J]. Energy, 2017, 131:165-178. DOI:10.1016/j.energy.2017.05.013.
[16] Farjoudi S, Alizadeh Z. A comparative study of total dissolved solids in water estimation models using Gaussian process regression with different kernel functions[J]. Environmental Earth Sciences, 2021, 80: 1-14. DOI:10.1007/s12665-021-09798-x.
[17] Xiang L, Wang P, Yang X, et al. Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism[J]. Measurement, 2021, 175: 109094. DOI:10.1016/j.measurement.2021.109094.
[18] Liu Y, Chen H, Wang B. DOA estimation based on CNN for underwater acoustic array[J].Applied Acoustics, 2021, 172: 107594.DOI:10.1016/j.apacoust.2020.107594.