[1] Song I, Cho M K, Cressler J D. Design and analysis of a low loss, wideband digital step attenuator with minimized amplitude and phase variations[J]. IEEE Journal of Solid-State Circuits, 2018, 53(8): 2202-2213. DOI: 10.1109/JSSC.2018.2827934.
[2] Zhao C X, Guo J W, Liu H H, et al. A 33-41-GHz SiGe-BiCMOS digital step attenuator with minimized unit impedance variation[J]. IEEE Transactions on Very Large Scale Integration(VLSI)Systems, 2021, 29(3): 568-579. DOI: 10.1109/TVLSI.2020.3046016.
[3] Gu P, Zhao D X, You X H. A DC-50 GHz CMOS switched-type attenuator with capacitive compensation technique[J].IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2020, 67(10): 3389-3399. DOI: 10.1109/TCSI.2020.2999094.
[4] Zhao C X, Zeng X, Zhang L, et al. A 37-40-GHz low-phase-imbalance CMOS attenuator with tail-capacitor compensation technique[J].IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2020, 67(10): 3400-3409. DOI: 10.1109/TCSI.2020.2990705.
[5] Bulja S, Grebennikov A. Variable reflection-type attenuators based on varactor diodes[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12): 3719-3727. DOI: 10.1109/TMTT.2012.2216895.
[6] Min B W, Rebeiz G M. A 10-50-GHz CMOS distributed step attenuator with low loss and low phase imbalance[J]. IEEE Journal of Solid-State Circuits, 2007, 42(11): 2547-2554. DOI: 10.1109/JSSC.2007.907205.
[7] Bae J, Lee J, Nguyen C. A 10-67-GHz CMOS dual-function switching attenuator with improved flatness and large attenuation range[J].IEEE Transactions on Microwave Theory and Techniques, 2013, 61(12): 4118-4129. DOI: 10.1109/TMTT.2013.2288694.
[8] Rao S G, Cheon C D, Cressler J D. A millimeter-wave, transformer-based, SiGe distributed attenuator[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(2): 145-148. DOI: 10.1109/LMWC.2021.3118291.
[9] Jeong J C, Yom I B, Kim J D, et al. A 6-18-GHz GaAs multifunction chip with 8-bit true time delay and 7-bit amplitude control[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(5): 2220-2230. DOI: 10.1109/TMTT.2017.2786698.
[10] Jeong J C, Uhm M, Jang D P, et al. A ka-band GaAs multi-function chip with wide-band 6-bit phase shifters and attenuators for satellite applications[C]//2019 13th European Conference on Antennas and Propagation(EuCAP). Krakow, Poland, 2019: 1-4.
[11] Zhao L. Investigations on RF transceivers and related integrated circuits for a new generation broadband wireless internet[D]. Nanjing: Southeast University, 2018.(in Chinese)
[12] Ben Yishay R, Elad D. W-band SiGe attenuators based on compact low-VSWR topologies[C]//2017 IEEE MTT-S International Microwave Symposium(IMS). Honololu, HI, USA, 2017: 638-641. DOI: 10.1109/MWSYM.2017.8058650.
[13] Bulja S, Rulikowski P. High dynamic range reflection-type attenuator[C]//2018 IEEE Radio and Antenna Days of the Indian Ocean(RADIO). Wolmar, Mauritius, 2018: 1-2.
[14] Chen N. A millimeter-wave 6-bit GaAs monolithic digital attenuator with low insertion phase shift[C]//2013 International Workshop on Microwave and Millimeter Wave Circuits and System Technology. Chengdu, China, 2014: 440-443. DOI: 10.1109/MMWCST.2013.6814545.
[15] Zhao J, Zhang B, Yang X F. A 25-30 GHz 6-bit digital attenuator with high accuracy and low insertion loss[C]//2016 IEEE MTT-S International Wireless Symposium(IWS). Shanghai, China, 2016: 1-3. DOI: 10.1109/IEEE-IWS.2016.7585420.
[16] Wang K P, Zhou T X, Zhang H, et al. A 28-40-GHz digital step attenuator with low amplitude and phase variations[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(1): 64-67. DOI: 10.1109/LMWC.2020.3039914.
[17] Zhao L, Liang W F, Xu X J, et al. An integrated Q-band 6-bit digital attenuator with low insertion loss[C]//2014 Asia-Pacific Microwave Conference. Sendai, Japan, 2015: 1196-1198.