|Table of Contents|

[1] Zhang Puyang, Xiong Lichao, Le Conghuan, Dong Hongji, et al. Comparison analysis of the bearing capacity of rock-socketed piles and sand piles for offshore wind turbines [J]. Journal of Southeast University (English Edition), 2023, 39 (4): 384-392. [doi:10.3969/j.issn.1003-7985.2023.04.007]
Copy

Comparison analysis of the bearing capacity of rock-socketed piles and sand piles for offshore wind turbines()
海上风电机组嵌岩桩与砂土桩承载力对比分析
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
39
Issue:
2023 4
Page:
384-392
Research Field:
Civil Engineering
Publishing date:
2023-12-20

Info

Title:
Comparison analysis of the bearing capacity of rock-socketed piles and sand piles for offshore wind turbines
海上风电机组嵌岩桩与砂土桩承载力对比分析
Author(s):
Zhang Puyang Xiong Lichao Le Conghuan Dong Hongji Ding Hongyan
State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
张浦阳 熊粒超 乐丛欢 董宏季 丁红岩
天津大学水利工程与安全国家重点实验室, 天津 300072
Keywords:
offshore wind power rock-socketed pile(RSP) laboratory test bearing capacity
海上风电 嵌岩桩 室内试验 承载力
PACS:
TU473
DOI:
10.3969/j.issn.1003-7985.2023.04.007
Abstract:
The bearing capacity of rock-socketed piles(RSPs)and sand piles under horizontal loads was compared and analyzed through laboratory-scale model tests. The tests were conducted using phosphogypsum to simulate the underlying rock and compacted sand as the upper layer. Particle analysis tests were conducted prior to the tests to confirm soil uniformity. Cone penetration test(CPT)was performed to evaluate the soil, confirming similar soil conditions for all experimental groups, indicating that any errors arising from soil properties could be neglected. The bearing capacity of RSPs was verified through finite element simulation, the results of which closely matched those of the tests. The results show that the bending moment distribution of RSPs and sand piles is consistent, with their maximum bending moment occurring at a depth of 2-3 times the pile diameter(5 cm). However, the location of the maximum bending moment for RSPs is about 1 pile diameter(5 cm)deeper than that of the sand piles. When the upper layer of sand is shallow, the bearing effect of RSPs is more significant, with an increase in the bearing capacity of about 41% compared to sand piles. In addition, due to the squeezing effect of the rock, the cross-sectional deformation of the RSPs is significantly lower than that of the sand piles.
通过室内缩尺模型试验, 比较和分析了嵌岩桩(RSP)和砂土桩在水平荷载下的承载能力.试验使用磷石膏来模拟底部岩石, 采用夯实法制作上层砂土.试验前进行了颗粒分析试验以确认土壤的均匀程度.采用圆锥负荷试验(CPT)评估土壤, 确认所有试验分组的土壤条件相似, 即土体性质引起的误差可以忽略不计.通过有限元模拟对嵌岩桩的承载能力进行了验证, 数值模拟结果与试验结果吻合良好.研究表明:嵌岩桩和砂土桩的弯矩分布一致, 桩身最大弯矩的位置在2~3倍桩径深度处, 但嵌岩桩的最大弯矩位置比砂土桩深约1倍桩径(5 cm);当上层覆土较浅时, 嵌岩桩的承载效果更显著, 承载力相对于砂土桩增加约41%;由于岩石的挤压效应, 嵌岩桩的横截面变形明显小于砂土桩.

References:

[1] Le C H, Ren J Y, Wang K, et al. Towing performance of the submerged floating offshore wind turbine under different wave conditions[J]. Journal of Marine Science and Engineering, 2021, 9(6):633.DOI:10.3390/jmse9060633.
[2] Zeng X M, Shi W, Feng X Y, et al. Investigation of higher-harmonic wave loads and low-frequency resonance response of floating offshore wind turbine under extreme wave groups[J].Marine Structures, 2023, 89: 103401. DOI: 10.1016/j.marstruc.2023.103401.
[3] Zhang P Y, Li J Y, Gan Y, et al. Bearing capacity and load transfer of brace topological in offshore wind turbine jacket structure[J].Ocean Engineering, 2020, 199: 107037. DOI: 10.1016/j.oceaneng.2020.107037.
[4] Zhang P Y, Ding H Y, Le C H, et al. Towing characteristics of large-scale composite bucket foundation for offshore wind turbines[J].Journal of Southeast University(English Edition), 2013, 29(3): 300-304.DOI:10.3969/j.issn.1003-7985.2013.03.013.
[5] Xue S, Yue M, Yan Y, et al. Seismic dynamic response analysis of a jacket offshore wind turbine based on an accurate soil-pile model[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(6): 143-151.DOI:10.16146/j.cnki.rndlgc.2021.06.021. (in Chinese)
[6] Liu X Y, Bai X Y, Zhang M Y, et al. Load-bearing characteristics of large-diameter rock-socketed piles based on ultimate load tests[J]. Advances in Materials Science and Engineering, 2020, 2020: 1-12. DOI: 10.1155/2020/6075607.
[7] He R, Ji J, Zhang J S, et al. Dynamic impedances of offshore rock-socketed monopiles[J].Journal of Marine Science and Engineering, 2019, 7(5): 134. DOI: 10.3390/jmse7050134.
[8] Li G, Zhang J L, Liu J, et al. Study on the uplift bearing capacity of rock-socketed piles[J].Soil Mechanics and Foundation Engineering, 2021, 58(3): 203-208. DOI: 10.1007/s11204-021-09729-9.
[9] Murali A K, Tran K M, Haque A, et al. Experimental and numerical investigation of the load-bearing mechanisms of piles socketed in soft rocks[J].Rock Mechanics and Rock Engineering, 2022, 55(9): 5555-5576. DOI: 10.1007/s00603-022-02954-0.
[10] Han B, Wang B G, Dai S, et al. Bearing failure mechanism of rock-socketed monopile foundation for offshore wind turbine in weathered-granite seabed[J].Marine Georesources and Geotechnology, 2023, 41(9): 1026-1037. DOI: 10.1080/1064119x.2022.2116370.
[11] Xu F, Dai G L, Gong W M, et al. Lateral loading of a rock-socketed pile using the strain wedge model based on Hoek-Brown criterion[J].Applied Sciences, 2022, 12(7): 3495. DOI: 10.3390/app12073495.
[12] Det Norske Veritaa. Design of offshore wind turbine structures: DNV-OS-J101[P]. 2014.
[13] Liang F F, Zhang H G, Luo Y, et al. Preliminary experimental research on the elastic modulus and Poisson’s ratioof cast-in-place phosphogypsum[J]. Journal of Guizhou University(Natural Sciences), 2013, 30(2): 81-85. DOI:10.15958/j.cnki.gdxbzrb.2013.02.014. (in Chinese)
[14] Zhang P Y, Dong H J, Le C H, et al. Finite element analysis of the horizontal load-bearing characteristics of offshore wind turbine rock-socketed piles[J]. Journal of Harbin Engineering University, 2021, 42(1): 132-138.DOI:10.11990eu.20195066. (in Chinese)
[15] Tong L Y, Wang Q, Du G Y, et al. Determination of undrained shear strength using piezocone penetration test in clayey soil for bridge foundation[J].Journal of Southeast University(English Edition), 2011, 27(2): 201-205.DOI:10.3969/j.issn.1003-7985.2011.02.018.
[16] Kim J H, Choo Y W, Kim D J, et al. Miniature cone tip resistance on sand in a centrifuge[J].Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(3): 1-13. DOI: 10.1061/(asce)gt.1943-5606.0001425.
[17] Gutiérrez-Ch J G, Senent S, Melentijevic S, et al. A DEM-based factor to design rock-socketed piles considering socket roughness[J]. Rock Mechanics and Rock Engineering, 2021, 54(7): 3409-3421. DOI: 10.1007/s00603-020-02347-1.
[18] Xing X B, Li X Y, Li W, et al. Numerical analysis of the end-suspended pile and the rock-socketed pile bearing capacity of a soil-rock composite foundation pit[J].Advances in Civil Engineering, 2022, 2022: 1-15. DOI: 10.1155/2022/1199548.
[19] Li Y F, Zhao J H, Xiong Y, et al. Experimental and theoretical research on large-diameter rock-socketed pile embedded depth[J]. Archives of Civil Engineering, 2021, 67(2): 537-550.DOI:10.24425/ace.2021.137184.

Memo

Memo:
Biograph:Zhang Puyang(1978—), male, doctor, associate professor, zpy@tju.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.52171274).
Citation: Zhang Puyang, Xiong Lichao, Le Conghuan, et al. Comparison analysis of the bearing capacity of rock-socketed piles and sand piles for offshore wind turbines[J].Journal of Southeast University(English Edition), 2023, 39(4):384-392.DOI:10.3969/j.issn.1003-7985.2023.04.007.
Last Update: 2023-12-20