[1] Ni Y H, Lu H, Ji C, et al. Comparative analysis on bridge corrosion damage detection based on semantic segmentation[J]. Journal of Southeast University(Natural Science Edition), 2023, 53(2):201-209. DOI:10.3969/j.issn.1001-0505.2023.02.003. (in Chinese)
[2] Cheng J M, Gao Y Q, Yan H D, et al. Statistical analysis of nondestructive testing results of cast steel joints in civil engineering structures[J]. Journal of Southeast University(English Edition), 2022, 38(1):1-8. DOI: 10.3969/j.issn.1003-7985.2022.01.001.
[3] Jiang J W, Ni F J. Evaluation of fatigue property of asphalt mixtures based on digital image correlation method[J]. Journal of Southeast University(English Edition), 2017, 33(2): 216-223. DOI: 10.3969/j.issn.1003-7985.2017.02.015.
[4] Li Z J, Wang H, Wang R G, et al. Experimental study on fatigue performance of diaphragm openings of orthotropic steel bridge decks based on 3D-DIC[J]. Journal of Southeast University(Natural Science Edition), 2019, 49(6): 1116-1123. DOI:10.3969/j.issn.1001-0505.2019.06.014. (in Chinese)
[5] Ngeljaratan L, Moustafa M A. Structural health monitoring and seismic response assessment of bridge structures using target-tracking digital image correlation[J]. Engineering Structures, 2020, 213:110551. DOI:10.1016/j.engstruct.2020.110551.
[6] Zhang L, Yang F, Daniel Z Y, et al. Road crack detection using deep convolutional neural network[C]//IEEE International Conference on Image Processing(ICIP). Phoenix, AZ, USA, 2016: 3708-3712. DOI: 10.1109/ICIP.2016.7533052.
[7] Cha Y-J, Choi W, Büyüköztürk O. Deep learning-based crack damage detection using convolutional neural networks: Deep learning-based crack damage detection using CNNs[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378. DOI: 10.1111/mice.12263.
[8] Lang H, Wen T, Lu J, et al. 3D pavement crack detection method based on deep learning[J]. Journal of Southeast University(Natural Science Edition), 2021, 51(1): 53-60. DOI:10.3969/j.issn.1001-0505.2021.01.008. (in Chinese)
[9] Oullette R, Browne M, Hirasawa K. Genetic algorithm optimization of a convolutional neural network for autonomous crack detection[C]// Proceedings of the 2004 Congress on Evolutionary Computation. Portland, ME, USA, 2004: 516-521. DOI: 10.1109/CEC.2004.1330900.
[10] Xu J, Zhao W, Liu P, et al. Removing rain and snow in a single image using guided filter[C]// IEEE International Conference on Computer Science and Automation Engineering(CSAE). Zhangjiajie, 2012: 304-307. DOI: 10.1109/CSAE.2012.6272780.
[11] Xu J, Zhao W, Liu P, et al. An improved guidance image based method to remove rain and snow in a single image[J]. Computer and Information Science, 2012, 5(3): 49-55. DOI: 10.5539/cis.v5n3p49.
[12] Tan R T, IEEE. Visibility in bad weather from a single image[C]// The IEEE Conference on Computer Vision and Pattern identification. Anchorage, AK, USA, 2008: 1-8. DOI: 10.1109/cvpr.2008.4587643.
[13] Satrasupalli S, Daniel E, Guntur S R. Single image haze removal based on transmission map estimation using encoder-decoder based deep learning architecture[J]. Optik, 2021, 248: 168197. DOI: 10.1016/j.ijleo.2021.168197.
[14] Ling Z, Fan G, Gong J, et al. Learning deep transmission network for efficient image dehazing[J]. Multimedia Tools and Applications, 2019, 78(1): 213-236. DOI: 10.1007/s11042-018-5687-0.
[15] Yang C Q, Li S, Wang B K, et al. High anti-noise extraction and identification method for concrete cracks based on dynamic threshold[J]. Journal of Southeast University(Natural Science Edition), 2021, 51(6): 967-972. DOI:10.3969/j.issn.1001-0505.2021.06.007. (in Chinese)
[16] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]// 14th European Conference on Computer Vision(ECCV). Amsterdam, Netherlands, 2016: 21-37. DOI: 10.1007/978-3-319-46448-0_2.
[17] Azzeh J, Zahran B, Alqadi Z. Salt and pepper noise: effects and removal[J]. JOIV: International Journal on Informatics Visualization, 2018, 2(4): 252-256. DOI: 10.30630/joiv.2.4.151.
[18] Padilla R, Netto S L, Da Silva E.A.B. A survey on performance metrics for object-detection algorithms [C]// 27th International Conference on Systems, Signals and Image Processing(IWSSIP). Niteroi, Brazil, 2020: 237-242. DOI: 10.1109/IWSSIP48289.2020.9145130.
[19] Felzenszwalb P F, Girshick R B, McAllester D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Trans Pattern Anal Mach Intell, 2010, 32(9): 19. DOI: 10.1109/TPAMI.2009.167.
[20] Wilson A C, Roelofs R, Stern M, et al. The marginal value of adaptive gradient methods in machine learning[C]// 31st Annual Conference on Neural Information Processing Systems(NIPS). Long Beach, CA, USA, 2017:4148-4158. DOI: 10.48550/arXiv.1705.08292.
[21] Smith L N. Cyclical learning rates for training neural networks[C]// IEEE Winter Conference on Applications of Computer Vision(WACV). Santa Rosa, CA, USA, 2017: 464-472. DOI: 10.1109/wacv.2017.58.
[22] Girshick R. Fast R-CNN[C]// IEEE International Conference on Computer Vision(ICCV). Santiago, Chile, 2015: 1440-1448. DOI: 10.1109/ICCV.2015.169.
[23] Wan C, Xiong X, Wen B, et al. Crack detection for concrete bridges with imaged based deep learning[J]. Science Progress, 2022, 105(4): 1-10. DOI: 10.1177/00368504221128487.