|Table of Contents|

[1] Hui Yi, Xu Liang,. Parametric analysis of the nonlinear primary resonance of spatial cable suspension bridges [J]. Journal of Southeast University (English Edition), 2024, 40 (2): 165-175. [doi:10.3969/j.issn.1003-7985.2024.02.007]
Copy

Parametric analysis of the nonlinear primary resonance of spatial cable suspension bridges()
空间索面悬索桥的非线性主共振参数分析
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
40
Issue:
2024 2
Page:
165-175
Research Field:
Traffic and Transportation Engineering
Publishing date:
2024-06-13

Info

Title:
Parametric analysis of the nonlinear primary resonance of spatial cable suspension bridges
空间索面悬索桥的非线性主共振参数分析
Author(s):
Hui Yi1 Xu Liang2
1School of Civil Engineering, Chongqing University, Chongqing 400030, China
2School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
回忆1 徐亮2
1重庆大学土木工程学院, 重庆 400030; 2苏州科技大学土木工程学院, 苏州 215011
Keywords:
suspension bridge spatial cable nonlinear dynamics multiple scale method primary resonance
悬索桥 空间主缆 非线性动力学 时间多尺度法 主共振
PACS:
U441.3
DOI:
10.3969/j.issn.1003-7985.2024.02.007
Abstract:
A comprehensive model based on continuum theory is adopted to conduct the parametric analysis of the primary resonance of the nonlinear vibration of spatial cable suspension bridges. This model can simultaneously account for the geometric nonlinearity of both the vertical motion of the deck and the vertical-horizontal motion of the cable. Based on this model and the multiple scale method(MSM), the modulation equations of the primary resonance responses are derived for spatial cable suspension bridges. Nonlinear coefficients in the modulation equations are determined to have notable influences on the maximum response amplitude of the primary resonance of the system and the hardening or softening characteristics of the investigated vibration mode. Meanwhile, system parameters, such as the inclination angles of the main cable and hanger, the sag-to-span ratio of the cable, and the tensile stiffness ratio between the deck and cable, can notably influence the nonlinear coefficient. The dynamic properties of the system can change dramatically in the form of sudden changes in the nonlinear coefficient of the symmetric vibration of the deck and cable if the parameter is located near the singularity, which should be avoided in the design of the system. This study can provide reference for the design of the bridge structure.
针对空间索面悬索桥的非线性振动问题, 采用一种基于连续介质理论的广义模型开展了非线性主共振参数分析.该模型同时考虑了悬索桥的桥面竖向运动和缆索竖向-水平运动的几何非线性特点.基于该模型和时间多尺度法, 推导了求解空间索面悬索桥的竖弯模态主共振响应的调制方程.研究表明, 调制方程中的非线性系数会显著影响系统主共振的最大响应幅值, 并影响竖弯振动模态的硬化或软化特性.此外, 主缆与吊杆的倾角、主缆垂跨比、主梁与主缆的抗拉刚度比等系统参数对非线性系数同样存在显著影响, 特别是当系统参数位于奇异点附近时, 系统的动力特性会随梁体和主缆的对称振动模态对应的非线性系数突变而剧烈变化, 在系统设计中应避免这种情况.该研究能够为该类桥梁的结构设计提供参考.

References:

[1] Dallard P, Fitzpatrick T, Flint A, et al. London millennium bridge: Pedestrian-induced lateral vibration[J].Journal of Bridge Engineering, 2001, 6(6): 412-417. DOI: 10.1061/(asce)1084-0702(2001)6: 6(412).
[2] Lang T Y, Wang H, Jia H Z, et al. Vortex-induced vibration performance and wind pressure distribution of main girder of long-span suspension bridge affected by temporary facilities[J]. Journal of Southeast University(Natural Science Edition), 2022, 52(5): 833-840. DOI:10.3969/j.issn.1001-0505.2022.05.002. (in Chinese)
[3] Tao T Y, Gao W J, Jiang Z X, et al. Analysis on wind-induced vibration and its influential factors of long suspenders in the wake of bridge tower[J].Journal of Southeast University(Natural Science Edition), 2023, 53(6): 1065-1071. DOI:10.3969/j.issn.1001-0505.2023.06.013. (in Chinese)
[4] Li Y, Yang X P, Chen Y M. Dynamic behavior analysis method for vehicle-bridge system considering abrupt cable-breakage events[J].Journal of Southeast University(Natural Science Edition), 2023, 53(6): 1156-1164. DOI:10.3969/j.issn.1001-0505.2023.06.023. (in Chinese)
[5] Abdel-Ghaffar A M, Rubin L I. Nonlinear free vibrations of suspension bridges: Theory[J].Journal of Engineering Mechanics, 1983, 109(1): 313-329. DOI: 10.1061/(asce)0733-9399(1983)109: 1(313).
[6] Abdel-Ghaffar A M, Rubin L I. Nonlinear free vibrations of suspension bridges: Application[J].Journal of Engineering Mechanics, 1983, 109(1): 330-345. DOI: 10.1061/(asce)0733-9399(1983)109: 1(330).
[7] Çevik M, Pakdemirli M. Non-linear vibrations of suspension bridges with external excitation[J].International Journal of Non-linear Mechanics, 2005, 40(6): 901-923. DOI: 10.1016/j.ijnonlinmec.2004.11.002.
[8] Lazer A C, McKenna P J. Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis[J].SIAM Review, 1990, 32(4): 537-578. DOI: 10.1137/1032120.
[9] Ardito R, Capsoni A, Guerrieri A. Internal parametric resonance and aeroelastic effects for long-span suspension bridges[C]//Proceedings of the 5th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering(COMPDYN 2015). Crete Island, Greece, 2015: 4508-4527.
[10] Capsoni A, Ardito R, Guerrieri A. Stability of dynamic response of suspension bridges[J].Journal of Sound and Vibration, 2017, 393: 285-307. DOI: 10.1016/j.jsv.2017.01.009.
[11] Lepidi M, Gattulli V. Non-linear interactions in the flexible multi-body dynamics of cable-supported bridge cross-sections[J].International Journal of Non-linear Mechanics, 2016, 80: 14-28. DOI: 10.1016/j.ijnonlinmec.2015.09.009.
[12] Peng J, Xiang M J, Wang L H, et al. Nonlinear primary resonance in vibration control of cable-stayed beam with time delay feedback[J].Mechanical Systems and Signal Processing, 2020, 137: 106488. DOI: 10.1016/j.ymssp.2019.106488.
[13] Zhang H Y, Chen Z Q, Hua X G, et al. Design and dynamic characterization of a large-scale eddy current damper with enhanced performance for vibration control[J].Mechanical Systems and Signal Processing, 2020, 145: 106879. DOI: 10.1016/j.ymssp.2020.106879.
[14] Hui Y, Kang H J, Law S S, et al. Modeling and nonlinear dynamic analysis of cable-supported bridge with inclined main cables[J].Engineering Structures, 2018, 156: 351-362. DOI: 10.1016/j.engstruct.2017.11.040.
[15] Hui Y, Xia C, Li K, et al. Modal characteristic and nonlinear dynamic response of suspension bridge with lateral asymmetric stiffness[J].International Journal of Structural Stability and Dynamics, 2023, 23(10): 2350110. DOI: 10.1142/s0219455423501109.
[16] Xu L, Hui Y, Yang Q S, et al. Modeling and modal analysis of suspension bridge based on continual formula method[J].Mechanical Systems and Signal Processing, 2022, 162: 107855. DOI: 10.1016/j.ymssp.2021.107855.
[17] Xu L, Hui Y, Zhu W D, et al. Three-to-one internal resonance analysis for a suspension bridge with spatial cable through a continuum model[J].European Journal of Mechanics—A, 2021, 90: 104354. DOI: 10.1016/j.euromechsol.2021.104354.
[18] Hui Y, Xu L, Jiang Y. Nonlinear torsional primary resonance analysis of suspension bridge with generalized configuration using mathematical model[J].Engineering Structures, 2022, 255: 113935. DOI: 10.1016/j.engstruct.2022.113935.
[19] Xu L, Hui Y, Liu G, et al. Internal resonance of generalized suspension bridge model considering torsional-vertical vibration[J].Structures, 2023, 47: 1754-1776. DOI: 10.1016/j.istruc.2022.11.131.
[20] Cao L L, Lü Y B, Cao D, et al. Influence analysis of pedestrian dynamic parameters on human-induced vibration of long span simply supported footbridge[J]. Journal of Southeast University(Natural Science Edition), 2020, 50(2): 260-266. DOI:10.3969/j.issn.1001-0505.2020.02.008. (in Chinese)
[21] Rega G, Lacarbonara W, Nayfeh A H, et al. Multiple resonances in suspended cables: Direct versus reduced-order models[J].International Journal of Non-linear Mechanics, 1999, 34(5): 901-924. DOI: 10.1016/s0020-7462(98)00065-1.
[22] Nayfeh A H, Mook D T. Nonlinear oscillations[M]. Weinheim, German: John Wiley & Sons, 2008: 127-128.
[23] Cheng P, Kang H J.Modeling and analysis of 1∶3 internal resonance of suspension bridge under boundary excitations[J]. International Journal of Structural Stability and Dynamics, 2024: 2550005. DOI: 10.1142/s0219455425500051.
[24] Nayfeh A H, Balachandran B. Applied nonlinear dynamics: Analytical, computational, and experimental methods[M]. New York: Wiley, 1995: 432-434.
[25] Xu L, Hui Y, Li K. Non-linear dynamic analysis on a continuum suspension bridge model with spatial layout of main cables[J].International Journal of Structural Stability and Dynamics, 2022, 22(7): 2250041. DOI: 10.1142/s0219455422500419.
[26] Lacarbonara W, Paolone A, Vestroni F. Non-linear modal properties of non-shallow cables[J].International Journal of Non-linear Mechanics, 2007, 42(3): 542-554. DOI: 10.1016/j.ijnonlinmec.2007.02.013.

Memo

Memo:
Biography: Hui Yi(1985—), male, doctor, professor, alihui@cqu.edu.cn.
Foundation items: The Scientific Research Foundation of Suzhou University of Science and Technology(No.332311106), the National Natural Science Foundation of China(No. 52078087), 111 Project of the Ministry of Education and the Bureau of Foreign Experts of China(No. B18062).
Citation: Hui Yi, Xu Liang.Parametric analysis of the nonlinear primary resonance of spatial cable suspension bridges[J].Journal of Southeast University(English Edition), 2024, 40(2):165-175.DOI:10.3969/j.issn.1003-7985.2024.02.007.
Last Update: 2024-06-20