[1] Zhu H P, Shen Z H, Weng S. Damage identification for vertical stiffness of joints of periodic continuous beams based on spectral element method[J]. Journal of Southeast University(English Edition), 2023, 39(4): 323-332. DOI: 10.3969/j.issn.1003-7985.2023.04.001.
[2] Jin W L, Yu Y F, Bai Y L. Life prediction and sensitivity analysis of reinforced concrete beams after corrosion and fatigue damage[J]. Journal of Southeast University(Natural Science Edition), 2024, 54(2): 260-267. DOI:10.3969/j.issn.1001-0505.2024.02.002. (in Chinese)
[3] Tu Y M, Lu S L, Wang C. Damage identification of steel truss bridges based on deep belief network[J]. Journal of Southeast University(English Edition), 2022, 38(4): 392-400. DOI: 10.3969/j.issn.1003-7985.2022.04.008.
[4] Sun L M, Shang Z Q, Xia Y, et al. Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection[J]. Journal of Structural Engineering, 2020, 146(5): 04020073. DOI: 10.1061/(asce)st.1943-541x.0002535.
[5] An Y H, Chatzi E, Sim S H, et al. Recent progress and future trends on damage identification methods for bridge structures[J]. Structural Control and Health Monitoring, 2019, 26(10): e2416. DOI: 10.1002/stc.2416.
[6] Karimi S, Mirza O. Damage identification in bridge structures: Review of available methods and case studies[J]. Australian Journal of Structural Engineering, 2023, 24(2): 89-119. DOI: 10.1080/13287982.2022.2120239.
[7] Yang D H, Sun J Z, Yi T H, et al. Early warning technology of long-span bridge bearing deterioration considering time lag effects of thermal-induced displacement[J]. Journal of Southeast University(Natural Science Edition), 2024, 54(2): 268-274. DOI:10.3969/j.issn.1001-0505.2024.02.003. (in Chinese)
[8] Sun H S, Song L, Yu Z W. A deep learning-based bridge damage detection and localization method[J]. Mechanical Systems and Signal Processing, 2023, 193: 110277. DOI: 10.1016/j.ymssp.2023.110277.
[9] Wang Z L, Cha Y J. Unsupervised deep learning approach using a deep auto-encoder with a one-class support vector machine to detect damage[J]. Structural Health Monitoring, 2021, 20(1): 406-425. DOI: 10.1177/1475921720934051.
[10] Ma X R, Lin Y Z, Nie Z H, et al. Structural damage identification based on unsupervised feature-extraction via Variational Auto-encoder[J]. Measurement, 2020, 160: 107811. DOI: 10.1016/j.measurement.2020.107811.
[11] Ni Y H, Lu H, Ji C, et al. Comparative analysis on bridge corrosion damage detection based on semantic segmentation[J]. Journal of Southeast University(Natural Science Edition), 2023, 53(2): 201-209. DOI:10.3969/j.issn.1001-0505.2023.02.003. (in Chinese)
[12] Duan Y Y, Chen Q Y, Zhang H M, et al. CNN-based damage identification method of tied-arch bridge using spatial-spectral information[J]. Smart Structures and Systems, 2019, 23: 507-520. DOI: 10.12989/SSS.2019.23.5.507.
[13] Masci J, Meier U, Ciresan D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]//International Conference on Artificial Neural Networks. Espoo, Finland, 2011: 52-59.
[14] Friedman J H. Greedy function approximation: A gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232. DOI: 10.1214/aos/1013203451.
[15] Chen T Q, Guestrin C. XGBoost: A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA, 2016: 785-794.
[16] Song Y Y, Lu Y. Decision tree methods: Applications for classification and prediction[J].Shanghai Archives of Psychiatry, 2015, 27(2): 130-135. DOI: 10.11919/j.issn.1002-0829.215044.
[17] Sagi O, Rokach L. Approximating XGBoost with an interpretable decision tree[J]. Information Sciences, 2021, 572: 522-542. DOI: 10.1016/j.ins.2021.05.055.
[18] Asselman A, Khaldi M, Aammou S. Enhancing the prediction of student performance based on the machine learning XGBoost algorithm[J]. Interactive Learning Environments, 2023, 31(6): 3360-3379. DOI: 10.1080/10494820.2021.1928235.
[19] Lei X J, Sun L M, Xia Y. Lost data reconstruction for structural health monitoring using deep convolutional generative adversarial networks[J]. Structural Health Monitoring, 2020, 20: 2069-2087. DOI: 10.1177/1475921720959226.
[20] Li Y X, Ni P, Sun L M, et al. A convolutional neural network-based full-field response reconstruction framework with multitype inputs and outputs[J]. Structural Control and Health Monitoring, 2022, 29(7): e2961. DOI: 10.1002/stc.2961.