|Table of Contents|

[1] Shan Jiazeng, Zhang Xi, Loong Cheng Ning, et al. Predictive maintenance and its applications in civil engineering structures: A review [J]. Journal of Southeast University (English Edition), 2024, 40 (3): 245-256. [doi:10.3969/j.issn.1003-7985.2024.03.004]
Copy

Predictive maintenance and its applications in civil engineering structures: A review()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
40
Issue:
2024 3
Page:
245-256
Research Field:
Civil Engineering
Publishing date:
2024-09-20

Info

Title:
Predictive maintenance and its applications in civil engineering structures: A review
Author(s):
Shan Jiazeng1 2 Zhang Xi1 Loong Cheng Ning3 Liu Yanzhe1 Hu Xinyue1
1College of Civil Engineering, Tongji University, Shanghai 200092, China
2Shanghai Engineering Research Center for Resilient Cities and Intelligent Disaster Mitigation, Shanghai 200092, China
3Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Hong Kong 999077, China
Keywords:
predictive maintenance civil engineering structural health monitoring machine learning
PACS:
TU746
DOI:
10.3969/j.issn.1003-7985.2024.03.004
Abstract:
Structural health monitoring and performance prediction are crucial for smart disaster mitigation and intelligent management of structures throughout their lifespan. Recent advancements in predictive maintenance strategies within the industrial manufacturing industry have inspired similar innovations in civil engineering, aiming to improve structural performance evaluation, damage diagnosis, and capacity prediction. This review delves into the framework of predictive maintenance and examines various existing solutions, focusing on critical areas such as data acquisition, condition monitoring, damage prognosis, and maintenance planning. Results from real-world applications of predictive maintenance in civil engineering, covering high-rise structures, deep foundation pits, and other infrastructure, are presented. The challenges of implementing predictive maintenance in civil engineering structures under current technology, such as model interpretability of data-driven methods and standards for predictive maintenance, are explored. Future research prospects within this area are also discussed.

References:

[1] Li H N, Ren L, Jia Z G, et al. State-of-the-art in structural health monitoring of large and complex civil infrastructures[J]. Journal of Civil Structural Health Monitoring, 2016, 6(1): 3-16. DOI: 10.1007/s13349-015-0108-9.
[2] Hui L, Bao Y, Lee S, et al. Data science and engineering for structural health monitoring[J]. Engineering Mechanics, 2015, 32(8): 1-7. DOI: 10.6052/j.issn.1000-4750.2014.08.ST11.
[3] Li Z J, Li A Q, Han X L. Operational modal identification of suspension bridge based on structural health monitoring system [J]. Journal of Southeast University (English Edition), 2009, 25(1): 104-107. DOI: 10.3969/j.issn.1003-7985.2009.01.022.
[4] Liu Y, Li A Q, Fei Q G, et al. Feature extraction and damage alarming using time series analysis [J]. Journal of Southeast University (English Edition), 2007, 23(1): 86-91. DOI: 10.3969/j.issn.1003-7985.2007.01.018.
[5] Alokita S, Rahul V, Jayakrishna K, et al. Recent advances and trends in structural health monitoring[M]//Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Amsterdam, the Netherlands: Elsevier, 2019: 53-73. DOI: 10.1016/b978-0-08-102291-7.00004-6.
[6] Omar N S, Hatem W A, Najy H I. Predictive modeling for developing maintenance management in construction projects[J].Civil Engineering Journal, 2019, 5(4): 892-900. DOI: 10.28991/cej-2019-03091297
[7] Yuan Y, Jiang X M, Liu X. Predictive maintenance of shield tunnels[J]. Tunnelling and Underground Space Technology, 2013, 38: 69-86. DOI: 10.1016/j.tust.2013.05.004.
[8] Zhu T W, Ran Y Y, Zhou X, et al. A survey of predictive maintenance: Systems, purposes and approaches[EB/OL].(2019-12-12)[2024-02-20]. http://arxiv.org/abs/1912.07383v2.
[9] Selcuk S. Predictive maintenance, its implementation and latest trends[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017, 231(9): 1670-1679. DOI: 10.1177/0954405415601640.
[10] Sezer E, Romero D, Guedea F, et al. An industry 4.0-enabled low cost predictive maintenance approach forSMEs[C]//2018 IEEE International Conference on Engineering, Technology and Innovation(ICE/ITMC). Stuttgart, Germany, 2018: 1-8. DOI: 10.1109/ICE.2018.8436307.
[11] Zhu Q S, Peng H, van Houtum G J. A condition-based maintenance policy for multi-component systems with a high maintenance setup cost[J]. OR Spectrum, 2015, 37(4): 1007-1035. DOI: 10.1007/s00291-015-0405-z.
[12] Molęda M, Maysiak-Mrozek B, Ding W P, et al. From corrective to predictive maintenance: A review of maintenance approaches for the power industry[J]. Sensors, 2023, 23(13): 5970. DOI: 10.3390/s23135970.
[13] Li H F, Parikh D, He Q, et al. Improving rail network velocity: A machine learning approach to predictive maintenance[J]. Transportation Research Part C: Emerging Technologies, 2014, 45: 17-26. DOI: 10.1016/j.trc.2014.04.013.
[14] Abbas A K, Al-haideri N A, Bashikh A A. Implementing artificial neural networks and support vector machines to predict lost circulation[J].Egyptian Journal of Petroleum, 2019, 28(4): 339-347. DOI: 10.1016/j.ejpe.2019.06.006.
[15] Rao B N K, Rao B B K, Challa N P. Predictive maintenance for monitoring heritage buildings and digitization of structural information[J]. International Journal of Innovative Technology and Exploring Engineering, 2019, 8: 2278-3075.
[16] Farahani B V, Barros F, Sousa P J, et al. A railway tunnel structural monitoring methodology proposal for predictive maintenance[J]. Structural Control and Health Monitoring, 2020, 27(8): 2587. DOI: 10.1002/stc.2587.
[17] Chen Q Y, Cao J N, Zhu S Y. Data-driven monitoring and predictive maintenance for engineering structures: Technologies, implementation challenges, and future directions[J]. IEEE Internet of Things Journal, 2023, 10(16): 14527-14551. DOI: 10.1109/JIOT.2023.3272535
[18] Bousdekis A, Lepenioti K, Apostolou D, et al. Decision making in predictive maintenance: Literature review and research agenda for industry 4.0[J].IFAC-PapersOnLine, 2019, 52(13): 607-612. DOI: 10.1016/j.ifacol.2019.11.226.
[19] Wu R, Liao Y C, Zong Z H, et al. Stochastic subspace modal parameter identification method based on GNSS signals[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(6):1045-1051. DOI:10.3969/j.issn.1001-0505.2020.06.008. (in Chinese)
[20] John A, Sadasivan J, Seelamantula C S. Adaptive Savitzky-Golay filtering in non-Gaussian noise[J]. IEEE Transactions on Signal Processing, 2021, 69: 5021-5036. DOI:10.1109/TSP.2021.3106450.
[21] Honaker J, King G. What to do about missing values in time-series cross-section data[J]. American Journal of Political Science, 2010, 54(2): 561-581. DOI: 10.1111/j.1540-5907.2010.00447.x.
[22] Smiti A. A critical overview of outlier detection methods[J].Computer Science Review, 2020, 38: 100306. DOI: 10.1016/j.cosrev.2020.100306.
[23] Lima F T, Souza V M A. A large comparison of normalization methods on time series[J].Big Data Research, 2023, 34: 100407. DOI: 10.1016/j.bdr.2023.100407.
[24] Singla P, Duhan M, Saroha S. Different normalization techniques as data preprocessing for one step ahead forecasting of solar global horizontal irradiance[M]//Artificial Intelligence for Renewable Energy Systems. Amsterdam, the Netherlands:Elsevier, 2022: 209-230. DOI: 10.1016/b978-0-323-90396-7.00004-3.
[25] Serdio F, Lughofer E, Pichler K, et al. Fault detection in multi-sensor networks based on multivariate time-series models and orthogonal transformations[J].Information Fusion, 2014, 20: 272-291. DOI: 10.1016/j.inffus.2014.03.006.
[26] Soualhi A, Medjaher K, Zerhouni N. Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression[J].IEEE Transactions on Instrumentation and Measurement, 2015, 64(1): 52-62. DOI: 10.1109/TIM.2014.2330494.
[27] Uhlmann E, Geisert C, Hohwieler E, et al. Data mining and visualization of diagnostic messages for condition monitoring[J].Procedia CIRP, 2013, 11: 225-228. DOI: 10.1016/j.procir.2013.07.045
[28] Loong C N, San Juan J D Q, Chang C C. Image-based structural analysis for education purposes: A proof-of-concept study[J]. Computer Applications in Engineering Education, 2023, 31(5): 1200-1218. DOI: 10.1002/cae.22635.
[29] Cachada A, Barbosa J, Leitño P, et al. Maintenance 4.0: Intelligent and predictive maintenance system architecture[C]//2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation(ETFA). Turin, Italy, 2018: 139-146. DOI: 10.1109/ETFA.2018.8502489.
[30] Zhang Y M, Wang H, Bai Y, et al. Switching Bayesian dynamic linear model for condition assessment of bridge expansion joints using structural health monitoring data[J].Mechanical Systems and Signal Processing, 2021, 160: 107879. DOI: 10.1016/j.ymssp.2021.107879.
[31] Dai X W, Gao Z W. From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2226-2238. DOI: 10.1109/TII.2013.2243743.
[32] Gao Z W, Cecati C, Ding S X. A survey of fault diagnosis and fault-tolerant techniques—Part Ⅰ: Fault diagnosis with model-based and signal-based approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3757-3767. DOI: 10.1109/TIE.2015.2417501.
[34] Shan J Z, Wang L J, Loong C N, et al. Damage tracking and hysteresis-based evaluation of seismic-excited RC shear wall using monitoring data[J]. The Structural Design of Tall and Special Buildings, 2024, 33(5): e2087. DOI: 10.1002/tal.2087.
[35] Xu W X, Qian Y J, Jin C H, et al. Resistance degradation model of concrete beam bridge based on inverse Gaussian stochastic process[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(2):303-311. DOI:10.3969/j.issn.1001-0505.2024.02.007. (in Chinese)
[36] Nan C, Khan F, Iqbal M T. Real-time fault diagnosis using knowledge-based expert system[J].Process Safety and Environmental Protection, 2008, 86(1): 55-71. DOI: 10.1016/j.psep.2007.10.014.
[37] Yin S, Ding S X, Xie X C, et al. A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6418-6428. DOI: 10.1109/TIE.2014.2301773.
[38] Sorsa T, Koivo H N, Koivisto H. Neural networks in process fault diagnosis[J].IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21(4): 815-825. DOI: 10.1109/21.108299.
[39] Lei Y G, Yang B, Jiang X W, et al. Applications of machine learning to machine fault diagnosis: A review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138: 106587. DOI: 10.1016/j.ymssp.2019.106587.
[40] Zhang W T, Yang D, Wang H C. Data-driven methods for predictive maintenance of industrial equipment: A survey[J]. IEEE Systems Journal, 2019, 13(3): 2213-2227. DOI: 10.1109/JSYST.2019.2905565.
[41] Paris P, Erdogan F. A critical analysis of crack propagation laws[J].Journal of Basic Engineering, 1963, 85(4): 528-533. DOI: 10.1115/1.3656900.
[42] Lucifredi A, Mazzieri C, Rossi M. Application of multiregressive linear models, dynamic Kriging models and neural network models to predictive maintenance of hydroelectric power systems[J]. Mechanical Systems and Signal Processing, 2000, 14(3): 471-494. DOI: 10.1006/mssp.1999.1257
[43] An D, Choi J H, Kim N H. Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab[J].Reliability Engineering & System Safety, 2013, 115: 161-169. DOI: 10.1016/j.ress.2013.02.019.
[44] Cauchi N, Macek K, Abate A. Model-based predictive maintenance in building automation systems with user discomfort[J].Energy, 2017, 138: 306-315. DOI: 10.1016/j.energy.2017.07.104.
[45] Hoffmann S M L, da Costa C A, de Oliveira Ramos G. A machine-learning based data-oriented pipeline for prognosis and health management systems[J]. Computers in Industry, 2023, 148: 103903. DOI: 10.1016/j.compind.2023.103903.
[46] Lakshmanan K, Tessicini F, Gil A J, et al. A fault prognosis strategy for an external gear pump using machine learning algorithms and synthetic data generation methods[J].Applied Mathematical Modelling, 2023, 123: 348-372. DOI: 10.1016/j.apm.2023.07.001.
[47] Deutsch J, He D. Using deep learning-based approach to predict remaining useful life of rotating components[J].IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(1): 11-20. DOI: 10.1109/TSMC.2017.2697842.
[48] Calvo-Bascones P, Sanz-Bobi M A. Advanced prognosis methodology based on behavioral indicators and Chained Sequential Memory Neural Networks with a diesel engine application[J].Computers in Industry, 2023, 144: 103771. DOI: 10.1016/j.compind.2022.103771.
[49] Zhang Y M, Wang H, Mao J X, et al. Probabilistic framework with Bayesian optimization for predicting typhoon-induced dynamic responses of a long-span bridge[J].Journal of Structural Engineering, 2021, 147(1): 04020297. DOI: 10.1061/(asce)st.1943-541x.0002881.
[50] Liao L X, Köttig F. A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction[J]. Applied Soft Computing, 2016, 44: 191-199. DOI: 10.1016/j.asoc.2016.03.013.
[51] Deng W K, Nguyen K T P, Gogu C, et al. Physics-informed lightweight temporal convolution networks for fault prognostics associated to bearing stiffness degradation[J]. PHM Society European Conference, 2022, 7(1): 118-125. DOI: 10.36001/phme.2022.v7i1.3365.
[52] Lu F, Wu J D, Huang J Q, et al. Aircraft engine degradation prognostics based on logistic regression and novel OS-ELM algorithm[J]. Aerospace Science and Technology, 2019, 84: 661-671. DOI: 10.1016/j.ast.2018.09.044.
[53] Nguyen R, Singh S K, Rai R. Physics-infused fuzzy generative adversarial network for robust failure prognosis[J].Mechanical Systems and Signal Processing, 2023, 184: 109611. DOI: 10.1016/j.ymssp.2022.109611.
[54] Luo J H, Namburu M, Pattipati K, et al. Model-based prognostic techniques[maintenance applications[C]//Proceedings AUTOTESTCON 2003. Anaheim, CA, USA, 2003: 330-340. DOI: 10.1109/AUTEST.2003.1243596.
[55] Zhong K, Han M, Han B. Data-driven based fault prognosis for industrial systems: A concise overview[J].IEEE/CAA Journal of Automatica Sinica, 2020, 7(2): 330-345. DOI: 10.1109/JAS.2019.1911804.
[56] Ben Ali J, Fnaiech N, Saidi L, et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[J]. Applied Acoustics, 2015, 89: 16-27. DOI: 10.1016/j.apacoust.2014.08.016.
[57] Yang D H, Sun J Z, Yi T H, et al. Early warning technology of long-span bridge bearing deterioration considering time lag effects of thermal-induced displacement[J].Journal of Southeast University (Natural Science Edition), 2024, 54(2):268-274. DOI:10.3969/j.issn.1001-0505.2024.02.003. (in Chinese)
[58] Li Z, Li J Y, Wang Y, et al. A deep learning approach for anomaly detection based on SAE and LSTM in mechanical equipment[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1): 499-510. DOI: 10.1007/s00170-019-03557-w.
[59] Li J L, Li X Y, He D. A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction[J]. IEEE Access, 2019, 7: 75464-75475. DOI: 10.1109/ACCESS.2019.2919566.
[60] Li Y, Zhang J P, He Y Z, et al. Performance prediction of asphalt pavement based on PSO-entropy weighted unbiased grey Markov model[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(2):416-422. DOI:10.3969/j.issn.1001-0505.2024.02.019. (in Chinese)
[61] Liu Z, Blasch E, Liao M, et al. Digital twin for predictive maintenance[C]//Predictive Maintenance, Communication, and Energy Systems: The Digital Transformation of NDE. Long Beach, CA, USA, 2023: 27-37. DOI: 10.1117/12.2660270.
[62] Montero Jimenez J J, Schwartz S, Vingerhoeds R, et al. Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics[J]. Journal of Manufacturing Systems, 2020, 56: 539-557. DOI: 10.1016/j.jmsy.2020.07.008.
[63] Lebold M, Reichard K, Hejda P, et al. A framework for next generation machinery monitoring and diagnostics[C]//Proceedings of the Society for Machinery Failure Prevention Technology Meeting. Norfolk, VA, USA, 2002: 115-126.
[64] Schmidt B, Wang L H. Cloud-enhanced predictive maintenance[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(1): 5-13. DOI: 10.1007/s00170-016-8983-8.
[65] Kovalev D, Shanin I, Stupnikov S, et al. Data mining methods and techniques for fault detection and predictive maintenance in housing and utility infrastructure[C]//2018 International Conference on Engineering Technologies and Computer Science(EnT). Moscow, Russia, 2018: 47-52. DOI: 10.1109/EnT.2018.00016.
[66] Zhou X Z, Hu W, Zhang Z Y, et al. Adaptive mutation sparrow search algorithm-Elman-AdaBoost model for predicting the deformation of subway tunnels[J]. Underground Space, 2024, 17: 320-360. DOI: 10.1016/j.undsp.2023.09.014.
[67] Li J L, Yin G H, Wang X F, et al. Automated decision making in highway pavement preventive maintenance based on deep learning[J]. Automation in Construction, 2022, 135: 104111. DOI: 10.1016/j.autcon.2021.104111.
[68] Ding J, Wei X, Gao P, et al. Prediction of settlement of soft soil subgrade during operation based on GA-BP neural network[J]. Journal of Southeast University (Natural Science Edition), 2023, 53(4):585-591. DOI:10.3969/j.issn.1001-0505.2023.04.003. (in Chinese)
[69] Xin J Z, Jiang Y, Zhou J T, et al. Bridge deformation prediction based on SHM data using improved VMD and conditional KDE[J]. Engineering Structures, 2022, 261: 114285. DOI: 10.1016/j.engstruct.2022.114285.
[70] Wang T Y, Reiffsteck P, Chevalier C, et al. Machine learning(ML)based predictive maintenance policy for bridges crossing waterways[J]. Transportation Research Procedia, 2023, 72: 1037-1044. DOI: 10.1016/j.trpro.2023.11.533.
[71] Allah B Z, Saeed A, Stipanovic I, et al. Predictive maintenance using tree-based classification techniques: A case of railway switches[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 35-54. DOI: 10.1016/j.trc.2019.02.001.
[72] Caetano L F, Teixeira P F. Predictive maintenance model for ballast tamping[J]. Journal of Transportation Engineering, 2016, 142(4): 825-829. DOI: 10.1061/(asce)te.1943-5436.0000825.
[73] Shan J Z, Zhang X, Liu Y W, et al. Deformation prediction of large-scale civil structures using spatiotemporal clustering and empirical mode decomposition-based long short-term memory network[J]. Automation in Construction, 2024, 158: 105222. DOI: 10.1016/j.autcon.2023.105222.
[74] Zhou Y, Luo X M, Zhang W J, et al. Improvement of axial deformation prediction in high-rise buildings with field monitoring and adaptive unscented Kalman filter[J]. Journal of Building Engineering, 2024, 83: 108432. DOI: 10.1016/j.jobe.2023.108432.
[75] Zhang F, Hu W. Application of neural network merging modeling dam deformation analysis [J]. Journal of Southeast University (English Edition), 2013, 29(4): 441-444. DOI: 10.3969/j.issn.1003-7985.2013.04.016.

Memo

Memo:
Biographies: Shan Jiazeng(1986—), male, doctor, professor; Loong Cheng Ning(corresponding author), male, doctor, postdoctoral fellow, cnloong@connect.ust.hk.
Foundation items: The National Natural Science Foundation of China(No. 52278312), the National Key Research and Development Program of China(No. 2022YFC3801202), the Fundamental Research Funds for the Central Universities.
Citation: Shan Jiazeng, Zhang Xi, Loong Cheng Ning, et al.Predictive maintenance and its applications in civil engineering structures: A review[J].Journal of Southeast University(English Edition), 2024, 40(3):245-256.DOI:10.3969/j.issn.1003-7985.2024.03.004.
Last Update: 2024-09-20