[1] Li H N, Ren L, Jia Z G, et al. State-of-the-art in structural health monitoring of large and complex civil infrastructures[J]. Journal of Civil Structural Health Monitoring, 2016, 6(1): 3-16. DOI: 10.1007/s13349-015-0108-9.
[2] Hui L, Bao Y, Lee S, et al. Data science and engineering for structural health monitoring[J]. Engineering Mechanics, 2015, 32(8): 1-7. DOI: 10.6052/j.issn.1000-4750.2014.08.ST11.
[3] Li Z J, Li A Q, Han X L. Operational modal identification of suspension bridge based on structural health monitoring system [J]. Journal of Southeast University (English Edition), 2009, 25(1): 104-107. DOI: 10.3969/j.issn.1003-7985.2009.01.022.
[4] Liu Y, Li A Q, Fei Q G, et al. Feature extraction and damage alarming using time series analysis [J]. Journal of Southeast University (English Edition), 2007, 23(1): 86-91. DOI: 10.3969/j.issn.1003-7985.2007.01.018.
[5] Alokita S, Rahul V, Jayakrishna K, et al. Recent advances and trends in structural health monitoring[M]//Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Amsterdam, the Netherlands: Elsevier, 2019: 53-73. DOI: 10.1016/b978-0-08-102291-7.00004-6.
[6] Omar N S, Hatem W A, Najy H I. Predictive modeling for developing maintenance management in construction projects[J].Civil Engineering Journal, 2019, 5(4): 892-900. DOI: 10.28991/cej-2019-03091297
[7] Yuan Y, Jiang X M, Liu X. Predictive maintenance of shield tunnels[J]. Tunnelling and Underground Space Technology, 2013, 38: 69-86. DOI: 10.1016/j.tust.2013.05.004.
[8] Zhu T W, Ran Y Y, Zhou X, et al. A survey of predictive maintenance: Systems, purposes and approaches[EB/OL].(2019-12-12)[2024-02-20]. http://arxiv.org/abs/1912.07383v2.
[9] Selcuk S. Predictive maintenance, its implementation and latest trends[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017, 231(9): 1670-1679. DOI: 10.1177/0954405415601640.
[10] Sezer E, Romero D, Guedea F, et al. An industry 4.0-enabled low cost predictive maintenance approach forSMEs[C]//2018 IEEE International Conference on Engineering, Technology and Innovation(ICE/ITMC). Stuttgart, Germany, 2018: 1-8. DOI: 10.1109/ICE.2018.8436307.
[11] Zhu Q S, Peng H, van Houtum G J. A condition-based maintenance policy for multi-component systems with a high maintenance setup cost[J]. OR Spectrum, 2015, 37(4): 1007-1035. DOI: 10.1007/s00291-015-0405-z.
[12] Molęda M, Maysiak-Mrozek B, Ding W P, et al. From corrective to predictive maintenance: A review of maintenance approaches for the power industry[J]. Sensors, 2023, 23(13): 5970. DOI: 10.3390/s23135970.
[13] Li H F, Parikh D, He Q, et al. Improving rail network velocity: A machine learning approach to predictive maintenance[J]. Transportation Research Part C: Emerging Technologies, 2014, 45: 17-26. DOI: 10.1016/j.trc.2014.04.013.
[14] Abbas A K, Al-haideri N A, Bashikh A A. Implementing artificial neural networks and support vector machines to predict lost circulation[J].Egyptian Journal of Petroleum, 2019, 28(4): 339-347. DOI: 10.1016/j.ejpe.2019.06.006.
[15] Rao B N K, Rao B B K, Challa N P. Predictive maintenance for monitoring heritage buildings and digitization of structural information[J]. International Journal of Innovative Technology and Exploring Engineering, 2019, 8: 2278-3075.
[16] Farahani B V, Barros F, Sousa P J, et al. A railway tunnel structural monitoring methodology proposal for predictive maintenance[J]. Structural Control and Health Monitoring, 2020, 27(8): 2587. DOI: 10.1002/stc.2587.
[17] Chen Q Y, Cao J N, Zhu S Y. Data-driven monitoring and predictive maintenance for engineering structures: Technologies, implementation challenges, and future directions[J]. IEEE Internet of Things Journal, 2023, 10(16): 14527-14551. DOI: 10.1109/JIOT.2023.3272535
[18] Bousdekis A, Lepenioti K, Apostolou D, et al. Decision making in predictive maintenance: Literature review and research agenda for industry 4.0[J].IFAC-PapersOnLine, 2019, 52(13): 607-612. DOI: 10.1016/j.ifacol.2019.11.226.
[19] Wu R, Liao Y C, Zong Z H, et al. Stochastic subspace modal parameter identification method based on GNSS signals[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(6):1045-1051. DOI:10.3969/j.issn.1001-0505.2020.06.008. (in Chinese)
[20] John A, Sadasivan J, Seelamantula C S. Adaptive Savitzky-Golay filtering in non-Gaussian noise[J]. IEEE Transactions on Signal Processing, 2021, 69: 5021-5036. DOI:10.1109/TSP.2021.3106450.
[21] Honaker J, King G. What to do about missing values in time-series cross-section data[J]. American Journal of Political Science, 2010, 54(2): 561-581. DOI: 10.1111/j.1540-5907.2010.00447.x.
[22] Smiti A. A critical overview of outlier detection methods[J].Computer Science Review, 2020, 38: 100306. DOI: 10.1016/j.cosrev.2020.100306.
[23] Lima F T, Souza V M A. A large comparison of normalization methods on time series[J].Big Data Research, 2023, 34: 100407. DOI: 10.1016/j.bdr.2023.100407.
[24] Singla P, Duhan M, Saroha S. Different normalization techniques as data preprocessing for one step ahead forecasting of solar global horizontal irradiance[M]//Artificial Intelligence for Renewable Energy Systems. Amsterdam, the Netherlands:Elsevier, 2022: 209-230. DOI: 10.1016/b978-0-323-90396-7.00004-3.
[25] Serdio F, Lughofer E, Pichler K, et al. Fault detection in multi-sensor networks based on multivariate time-series models and orthogonal transformations[J].Information Fusion, 2014, 20: 272-291. DOI: 10.1016/j.inffus.2014.03.006.
[26] Soualhi A, Medjaher K, Zerhouni N. Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression[J].IEEE Transactions on Instrumentation and Measurement, 2015, 64(1): 52-62. DOI: 10.1109/TIM.2014.2330494.
[27] Uhlmann E, Geisert C, Hohwieler E, et al. Data mining and visualization of diagnostic messages for condition monitoring[J].Procedia CIRP, 2013, 11: 225-228. DOI: 10.1016/j.procir.2013.07.045
[28] Loong C N, San Juan J D Q, Chang C C. Image-based structural analysis for education purposes: A proof-of-concept study[J]. Computer Applications in Engineering Education, 2023, 31(5): 1200-1218. DOI: 10.1002/cae.22635.
[29] Cachada A, Barbosa J, Leitño P, et al. Maintenance 4.0: Intelligent and predictive maintenance system architecture[C]//2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation(ETFA). Turin, Italy, 2018: 139-146. DOI: 10.1109/ETFA.2018.8502489.
[30] Zhang Y M, Wang H, Bai Y, et al. Switching Bayesian dynamic linear model for condition assessment of bridge expansion joints using structural health monitoring data[J].Mechanical Systems and Signal Processing, 2021, 160: 107879. DOI: 10.1016/j.ymssp.2021.107879.
[31] Dai X W, Gao Z W. From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2226-2238. DOI: 10.1109/TII.2013.2243743.
[32] Gao Z W, Cecati C, Ding S X. A survey of fault diagnosis and fault-tolerant techniques—Part Ⅰ: Fault diagnosis with model-based and signal-based approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3757-3767. DOI: 10.1109/TIE.2015.2417501.
[34] Shan J Z, Wang L J, Loong C N, et al. Damage tracking and hysteresis-based evaluation of seismic-excited RC shear wall using monitoring data[J]. The Structural Design of Tall and Special Buildings, 2024, 33(5): e2087. DOI: 10.1002/tal.2087.
[35] Xu W X, Qian Y J, Jin C H, et al. Resistance degradation model of concrete beam bridge based on inverse Gaussian stochastic process[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(2):303-311. DOI:10.3969/j.issn.1001-0505.2024.02.007. (in Chinese)
[36] Nan C, Khan F, Iqbal M T. Real-time fault diagnosis using knowledge-based expert system[J].Process Safety and Environmental Protection, 2008, 86(1): 55-71. DOI: 10.1016/j.psep.2007.10.014.
[37] Yin S, Ding S X, Xie X C, et al. A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6418-6428. DOI: 10.1109/TIE.2014.2301773.
[38] Sorsa T, Koivo H N, Koivisto H. Neural networks in process fault diagnosis[J].IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21(4): 815-825. DOI: 10.1109/21.108299.
[39] Lei Y G, Yang B, Jiang X W, et al. Applications of machine learning to machine fault diagnosis: A review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138: 106587. DOI: 10.1016/j.ymssp.2019.106587.
[40] Zhang W T, Yang D, Wang H C. Data-driven methods for predictive maintenance of industrial equipment: A survey[J]. IEEE Systems Journal, 2019, 13(3): 2213-2227. DOI: 10.1109/JSYST.2019.2905565.
[41] Paris P, Erdogan F. A critical analysis of crack propagation laws[J].Journal of Basic Engineering, 1963, 85(4): 528-533. DOI: 10.1115/1.3656900.
[42] Lucifredi A, Mazzieri C, Rossi M. Application of multiregressive linear models, dynamic Kriging models and neural network models to predictive maintenance of hydroelectric power systems[J]. Mechanical Systems and Signal Processing, 2000, 14(3): 471-494. DOI: 10.1006/mssp.1999.1257
[43] An D, Choi J H, Kim N H. Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab[J].Reliability Engineering & System Safety, 2013, 115: 161-169. DOI: 10.1016/j.ress.2013.02.019.
[44] Cauchi N, Macek K, Abate A. Model-based predictive maintenance in building automation systems with user discomfort[J].Energy, 2017, 138: 306-315. DOI: 10.1016/j.energy.2017.07.104.
[45] Hoffmann S M L, da Costa C A, de Oliveira Ramos G. A machine-learning based data-oriented pipeline for prognosis and health management systems[J]. Computers in Industry, 2023, 148: 103903. DOI: 10.1016/j.compind.2023.103903.
[46] Lakshmanan K, Tessicini F, Gil A J, et al. A fault prognosis strategy for an external gear pump using machine learning algorithms and synthetic data generation methods[J].Applied Mathematical Modelling, 2023, 123: 348-372. DOI: 10.1016/j.apm.2023.07.001.
[47] Deutsch J, He D. Using deep learning-based approach to predict remaining useful life of rotating components[J].IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(1): 11-20. DOI: 10.1109/TSMC.2017.2697842.
[48] Calvo-Bascones P, Sanz-Bobi M A. Advanced prognosis methodology based on behavioral indicators and Chained Sequential Memory Neural Networks with a diesel engine application[J].Computers in Industry, 2023, 144: 103771. DOI: 10.1016/j.compind.2022.103771.
[49] Zhang Y M, Wang H, Mao J X, et al. Probabilistic framework with Bayesian optimization for predicting typhoon-induced dynamic responses of a long-span bridge[J].Journal of Structural Engineering, 2021, 147(1): 04020297. DOI: 10.1061/(asce)st.1943-541x.0002881.
[50] Liao L X, Köttig F. A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction[J]. Applied Soft Computing, 2016, 44: 191-199. DOI: 10.1016/j.asoc.2016.03.013.
[51] Deng W K, Nguyen K T P, Gogu C, et al. Physics-informed lightweight temporal convolution networks for fault prognostics associated to bearing stiffness degradation[J]. PHM Society European Conference, 2022, 7(1): 118-125. DOI: 10.36001/phme.2022.v7i1.3365.
[52] Lu F, Wu J D, Huang J Q, et al. Aircraft engine degradation prognostics based on logistic regression and novel OS-ELM algorithm[J]. Aerospace Science and Technology, 2019, 84: 661-671. DOI: 10.1016/j.ast.2018.09.044.
[53] Nguyen R, Singh S K, Rai R. Physics-infused fuzzy generative adversarial network for robust failure prognosis[J].Mechanical Systems and Signal Processing, 2023, 184: 109611. DOI: 10.1016/j.ymssp.2022.109611.
[54] Luo J H, Namburu M, Pattipati K, et al. Model-based prognostic techniques[maintenance applications[C]//Proceedings AUTOTESTCON 2003. Anaheim, CA, USA, 2003: 330-340. DOI: 10.1109/AUTEST.2003.1243596.
[55] Zhong K, Han M, Han B. Data-driven based fault prognosis for industrial systems: A concise overview[J].IEEE/CAA Journal of Automatica Sinica, 2020, 7(2): 330-345. DOI: 10.1109/JAS.2019.1911804.
[56] Ben Ali J, Fnaiech N, Saidi L, et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[J]. Applied Acoustics, 2015, 89: 16-27. DOI: 10.1016/j.apacoust.2014.08.016.
[57] Yang D H, Sun J Z, Yi T H, et al. Early warning technology of long-span bridge bearing deterioration considering time lag effects of thermal-induced displacement[J].Journal of Southeast University (Natural Science Edition), 2024, 54(2):268-274. DOI:10.3969/j.issn.1001-0505.2024.02.003. (in Chinese)
[58] Li Z, Li J Y, Wang Y, et al. A deep learning approach for anomaly detection based on SAE and LSTM in mechanical equipment[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1): 499-510. DOI: 10.1007/s00170-019-03557-w.
[59] Li J L, Li X Y, He D. A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction[J]. IEEE Access, 2019, 7: 75464-75475. DOI: 10.1109/ACCESS.2019.2919566.
[60] Li Y, Zhang J P, He Y Z, et al. Performance prediction of asphalt pavement based on PSO-entropy weighted unbiased grey Markov model[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(2):416-422. DOI:10.3969/j.issn.1001-0505.2024.02.019. (in Chinese)
[61] Liu Z, Blasch E, Liao M, et al. Digital twin for predictive maintenance[C]//Predictive Maintenance, Communication, and Energy Systems: The Digital Transformation of NDE. Long Beach, CA, USA, 2023: 27-37. DOI: 10.1117/12.2660270.
[62] Montero Jimenez J J, Schwartz S, Vingerhoeds R, et al. Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics[J]. Journal of Manufacturing Systems, 2020, 56: 539-557. DOI: 10.1016/j.jmsy.2020.07.008.
[63] Lebold M, Reichard K, Hejda P, et al. A framework for next generation machinery monitoring and diagnostics[C]//Proceedings of the Society for Machinery Failure Prevention Technology Meeting. Norfolk, VA, USA, 2002: 115-126.
[64] Schmidt B, Wang L H. Cloud-enhanced predictive maintenance[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(1): 5-13. DOI: 10.1007/s00170-016-8983-8.
[65] Kovalev D, Shanin I, Stupnikov S, et al. Data mining methods and techniques for fault detection and predictive maintenance in housing and utility infrastructure[C]//2018 International Conference on Engineering Technologies and Computer Science(EnT). Moscow, Russia, 2018: 47-52. DOI: 10.1109/EnT.2018.00016.
[66] Zhou X Z, Hu W, Zhang Z Y, et al. Adaptive mutation sparrow search algorithm-Elman-AdaBoost model for predicting the deformation of subway tunnels[J]. Underground Space, 2024, 17: 320-360. DOI: 10.1016/j.undsp.2023.09.014.
[67] Li J L, Yin G H, Wang X F, et al. Automated decision making in highway pavement preventive maintenance based on deep learning[J]. Automation in Construction, 2022, 135: 104111. DOI: 10.1016/j.autcon.2021.104111.
[68] Ding J, Wei X, Gao P, et al. Prediction of settlement of soft soil subgrade during operation based on GA-BP neural network[J]. Journal of Southeast University (Natural Science Edition), 2023, 53(4):585-591. DOI:10.3969/j.issn.1001-0505.2023.04.003. (in Chinese)
[69] Xin J Z, Jiang Y, Zhou J T, et al. Bridge deformation prediction based on SHM data using improved VMD and conditional KDE[J]. Engineering Structures, 2022, 261: 114285. DOI: 10.1016/j.engstruct.2022.114285.
[70] Wang T Y, Reiffsteck P, Chevalier C, et al. Machine learning(ML)based predictive maintenance policy for bridges crossing waterways[J]. Transportation Research Procedia, 2023, 72: 1037-1044. DOI: 10.1016/j.trpro.2023.11.533.
[71] Allah B Z, Saeed A, Stipanovic I, et al. Predictive maintenance using tree-based classification techniques: A case of railway switches[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 35-54. DOI: 10.1016/j.trc.2019.02.001.
[72] Caetano L F, Teixeira P F. Predictive maintenance model for ballast tamping[J]. Journal of Transportation Engineering, 2016, 142(4): 825-829. DOI: 10.1061/(asce)te.1943-5436.0000825.
[73] Shan J Z, Zhang X, Liu Y W, et al. Deformation prediction of large-scale civil structures using spatiotemporal clustering and empirical mode decomposition-based long short-term memory network[J]. Automation in Construction, 2024, 158: 105222. DOI: 10.1016/j.autcon.2023.105222.
[74] Zhou Y, Luo X M, Zhang W J, et al. Improvement of axial deformation prediction in high-rise buildings with field monitoring and adaptive unscented Kalman filter[J]. Journal of Building Engineering, 2024, 83: 108432. DOI: 10.1016/j.jobe.2023.108432.
[75] Zhang F, Hu W. Application of neural network merging modeling dam deformation analysis [J]. Journal of Southeast University (English Edition), 2013, 29(4): 441-444. DOI: 10.3969/j.issn.1003-7985.2013.04.016.