|Table of Contents|

[1] Zhou Yukun, Chen Jianlong,. Characterizations of m-weak group inverses [J]. Journal of Southeast University (English Edition), 2024, 40 (3): 313-318. [doi:10.3969/j.issn.1003-7985.2024.03.011]
Copy

Characterizations of m-weak group inverses()
m-弱群逆的刻画
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
40
Issue:
2024 3
Page:
313-318
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2024-09-20

Info

Title:
Characterizations of m-weak group inverses
m-弱群逆的刻画
Author(s):
Zhou Yukun Chen Jianlong
School of Mathematics, Southeast University, Nanjing 210096, China
周玉坤 陈建龙
东南大学数学学院, 南京210096
Keywords:
m-weak group inverse weak group inverse Drazin inverse commuting property
m-弱群逆 弱群逆 Drazin逆 交换性
PACS:
O153.3
DOI:
10.3969/j.issn.1003-7985.2024.03.011
Abstract:
To characterize m-weak group inverses, several algebraic methods are used, such as the use of idempotents, one-side principal ideals, and units. Consider an element a within a unitary ring that possesses Drazin invertibility and an involution. This paper begins by outlining the conditions necessary for the existence of the m-weak group inverse of a. Moreover, it explores the criteria under which a can be considered pseudo core invertible and weak group invertible. In the context of a weak proper *-ring, it is proved that a is weak group invertible if, and only if, aD can serve as the weak group inverse of au, where u represents a specially invertible element closely associated with aD. The paper also introduces a counterexample to illustrate that aD cannot universally serve as the pseudo core inverse of another element. This distinction underscores the nuanced differences between pseudo core inverses and weak group inverses. Ultimately, the discussion expands to include the commuting properties of weak group inverses, extending these considerations to m-weak group inverses. Several new conditions on commuting properties of generalized inverses are given. These results show that pseudo core inverses, weak group inverses, and m-weak group inverses are not only closely linked but also have significant differences that set them apart.
为了刻画 m-弱群逆, 采用幂等元刻画、单边主理想刻画、可逆元刻画等代数方法.设 a 为带对合的幺环中的Drazin可逆元.首先, 给出了元素 am-弱群逆的存在性刻画, 得到 a 为伪核可逆元和弱群可逆元的等价条件.其次, 在弱proper *-环中, 证明元素 a 为弱群可逆的当且仅当 a 的Drazin逆为au的弱群逆, u为一个与 a 的Drazin逆密切相关的特殊可逆元.然后, 给出一个反例说明 a 的Drazin逆一般不是其他元素的伪核逆, 由此表明了伪核逆与弱群逆的区别.最后, 将关于弱群逆交换性的结论推广到 m-弱群逆的情形, 给出了新的关于广义逆交换性的条件.结果表明, 伪核逆、弱群逆与 m-弱群逆联系密切, 但又存在显著区别.

References:

[1] Drazin M P. Pseudo-inverses in associative rings and semigroups [J]. The American Mathematical Monthly, 1958, 65(7): 506-514. DOI: 10.2307/2308576.
[2] Baksalary O M, Trenkler G. Core inverse of matrices [J]. Linear and Multilinear Algebra, 2010, 58(6): 681-697. DOI:10.1080/03081080902778222.
[3] Gao Y F, Chen J L. Pseudo core inverses in rings with involution [J]. Communications in Algebra, 2018, 46(1): 38-50. DOI: 10.1080/00927872.2016.1260729.
[4] Prasad K M, Mohana K. Core-EP inverse [J]. Linear and Multilinear Algebra, 2014, 62: 792-802. DOI: 10.1080/03081087.2013.791690.
[5] Raki’/c D S, Dinˇ/ci’/c N ˇ/C, Djordjevi’/c D S. Group, Moore-Penrose, core and dual core inverse in rings with involution [J]. Linear Algebra and its Applications, 2014, 463: 115-133. DOI: 10.1016/j.laa.2014.09.003.
[6] Wang H X, Chen J L. Weak group inverse [J]. Open Mathematics, 2018, 16: 1218-1232. DOI: 10.1515/math-2018-0100.
[7] Zhou M M, Chen J L, Zhou Y K. Weak group inverses in proper *-rings [J]. Journal of Algebra and Its Applications, 2020, 19(12): 2050238. DOI: 10.1142/S0219498820502382.
[8] Zhou Y K, Chen J L, Zhou M M. m-weak group inverses in a ring with involution [J]. RACSAM, 2020, 115(1): 2. DOI: 10.1007/s13398-020-00932-1.
[9] Li W D, Chen J L, Zhou Y K. Characterizations and representations of weak core inverses and m-weak group inverses [J]. Turkish Journal of Mathematics, 2023, 47: 1453-1468. DOI:10.55730/1300-0098.3440.
[10] Zhou M M, Chen J L, Zhou Y K, et al. Weak group inverses and partial isometries in proper *-rings [J]. Linear and Multilinear Algebra, 2022, 70(19): 4528-4543. DOI: 10.1080/03081087.2021.1884639.
[11] Zhou Y K, Chen J L. Weak core inverses and pseudo core inverses in a ring with involution [J]. Linear and Multilinear Algebra, 2022, 70(21): 6876-6890. DOI: 10.1080/03081087.2021.1971151.
[12] Drazin M P. Commuting properties of generalized inverses [J]. Linear and Multilinear Algebra, 2013, 61(12): 1675-1681. DOI: 10.1080/03081087.2012.753593.
[13] Zhu H H, Chen J L. Representations of the Drazin inverse involving idempotents in a ring [J]. Journal of Southeast University(English Edition), 2015, 31(3): 427-430. DOI: 10.3969/j.issn.1003-7985.2015.03.023.
[14] Zou H L, Chen J L. Further results on pseudo Drazin inverse in Banach algebras[J]. Journal of Southeast University(Natural Science Edition), 2017, 47(3): 626-630. DOI:10.3969/j.issn.1001-0505.2017.03.034. (in Chinese)
[15] Zou H L, Zeng Y D, Chen J L. Generalized Drazin invertibility of the product of elements in Banach algebras [J]. Journal of Southeast University(Natural Science Edition), 2023, 53(1): 182-186. DOI:10.3969/j.jssn.1001-0505.2023.01.022. (in Chinese)

Memo

Memo:
Biographies: Zhou Yukun(1996—), male, graduate; Chen Jianlong(corresponding author), male, doctor, professor, jlchen@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No. 12171083, 12071070), Qing Lan Project of Jiangsu Province and the Postgraduate Research and Practice Innovation Program of Jiangsu Province(No. KYCX22_0231).
Citation: Zhou Yukun, Chen Jianlong.Characterizations of m-weak group inverses[J].Journal of Southeast University(English Edition), 2024, 40(3):313-318.DOI:10.3969/j.issn.1003-7985.2024.03.011.
Last Update: 2024-09-20