|Table of Contents|

[1] Zhou Lei, Zhou Hexiang, Ma Jian, Electrical power generator from electrospun hybrid PVDF-BaTiO3 nanofiber membranes [J]. Journal of Southeast University (English Edition), 2024, 40 (4): 403-409. [doi:10.3969/j.issn.1003-7985.2024.04.009]
Copy

Electrical power generator from electrospun hybrid PVDF-BaTiO3 nanofiber membranes()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
40
Issue:
2024 4
Page:
403-409
Research Field:
Mechanical Engineering
Publishing date:
2024-12-03

Info

Title:
Electrical power generator from electrospun hybrid PVDF-BaTiO3 nanofiber membranes
Author(s):
Zhou Lei1 Zhou Hexiang2 Ma Jian2 3
1College of Communication and Art Design, University of Shanghai for Science and Technology, Shanghai 200093, China
2School of Mechanical Engineering, Southeast University, Nanjing 211189, China
3Engineering Research Center of New Light Sources Technology and Equipment of Ministry of Education, Southeast University, Nanjing 211189, China
Keywords:
electrospinning polyvinylidene difluoride(PVDF)nanofiber barium titanate(BaTiO3) piezoelectric film
PACS:
TH789
DOI:
10.3969/j.issn.1003-7985.2024.04.009
Abstract:
To enhance the piezoelectric performance of piezoelectric polymer thin films in general, hybrid polyvinylidene difluoride(PVDF)and nanosized barium titanate(BaTiO3)piezoelectric films were prepared and their piezoelectric performance examined. The hybrid nanofibers were fabricated via electrospinning at an external voltage of 15 kV. The nonwoven fabrics were collected using a roller collection device, and their morphological structures were analyzed via scanning electron microscopy. The crystal structures of these piezoelectric films were characterized via micro-Raman spectroscopy. β-phase of the composite nanofiber membrane almost increased to twice owing to the addition of BaTiO3 nanoparticles. Compared with pure, electrospun PVDF piezoelectric film, the piezoelectric characteristics of the hybrid piezoelectric films were considerably enhanced because of the additional BaTiO3 nanoparticles. The maximum instantaneous open-circuit voltage of the hybrid PVDF-BaTiO3 nanofibers film can be high up to 80 V. The high-performance hybrid piezoelectric films exhibited notable prospects for applications in wearable electronic textiles.

References:

[1] Zhao Z, Dai Y, Dou S X, et al. Flexible nanogenerators for wearable electronic applications based on piezoelectric materials[J]. Materials Today Energy, 2021, 20: 100690. DOI: 10.1016/j.mtener.2021.100690.
[2] Xu C, Song Y, Han M D, et al. Portable and wearable self-powered systems based on emerging energy harvesting technology[J]. Microsystems & Nanoengineering, 2021, 7: 25. DOI: 10.1038/s41378-021-00248-z.
[3] Nan X L, Wang X, Kang T T, et al. Review of flexible wearable sensor devices for biomedical application[J]. Micromachines, 2022, 13(9): 1395. DOI: 10.3390/mi13091395.
[4] Liu L M, Zhang H J, Zhou S Y, et al. Boosting the piezoelectric response and interfacial compatibility in flexible piezoelectric composites via DET-doping BT nanoparticles[J]. Polymers, 2024, 16(6): 743. DOI: 10.3390/polym16060743.
[5] Sorayani Bafqi M S, Bagherzadeh R, Latifi M. Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency[J]. Journal of Polymer Research, 2015, 22(7): 130. DOI: 10.1007/s10965-015-0765-8.
[6] Serairi L, Leprince-Wang Y. ZnO nanowire-based piezoelectric nanogenerator device performance tests[J]. Crystals, 2022, 12(8): 1023. DOI: 10.3390/cryst12081023.
[7] Lopez Garcia A J, Mouis M, Cresti A, et al. Influence of slow or fast surface traps on the amplitude and symmetry of the piezoelectric response of semiconducting-nanowire-based transducers[J]. Journal of Physics D: Applied Physics, 2022, 55(40): 405502. DOI: 10.1088/1361-6463/ac8251.
[8] Hao F Q, Wang B, Wang X, et al. Soybean-inspired nanomaterial-based broadband piezoelectric energy harvester with local bistability[J]. Nano Energy, 2022, 103: 107823. DOI: 10.1016/j.nanoen.2022.107823.
[9] Chen K H, Cheng C M, Chen Y J, et al. Lead-free piezoelectric ceramic micro-pressure thick films[J].Crystals, 2023, 13(2): 201. DOI: 10.3390/cryst13020201.
[10] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246. DOI: 10.1126/science.1124005.
[11] Qin Y, Wang X D, Wang Z L.Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature, 2008, 451(7180): 809-813. DOI: 10.1038/nature06601.
[12] Zhu G, Yang R S, Wang S H, et al. Flexible high-output nanogenerator based on lateral ZnO nanowire array[J]. Nano Letters, 2010, 10(8): 3151-3155. DOI: 10.1021/nl101973h.
[13] Hu Y F, Lin L, Zhang Y, et al. Replacing a battery by a nanogenerator with 20 V output[J]. Advanced Materials, 2012, 24(1): 110-114. DOI: 10.1002/adma.201103727.
[14] Huang C T, Song J H, Tsai C M, et al. Single-InN-nanowire nanogenerator with upto 1 V output voltage[J]. Advanced Materials, 2010, 22(36): 4008-4013. DOI: 10.1002/adma.201000981.
[15] Huang C T, Song J H, Lee W F, et al. GaN nanowire arrays for high-output nanogenerators[J]. Journal of the American Chemical Society, 2010, 132(13): 4766-4771. DOI: 10.1021/ja909863a.
[16] Wang X B, Song J H, Zhang F, et al. Electricity generation based on one-dimensional group-Ⅲ nitride nanomaterials[J]. Advanced Materials, 2010, 22(19): 2155-2158. DOI: 10.1002/adma.200903442.
[17] Lin Y F, Song J H, Ding Y, et al. Piezoelectric nanogenerator using CdS nanowires[J]. Applied Physics Letters, 2008, 92(2): 022105. DOI: 10.1063/1.2831901.
[18] Lin Y F, Song J H, Ding Y, et al. Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect[J]. Advanced Materials, 2008, 20(16): 3127-3130. DOI: 10.1002/adma.200703236.
[19] Lu M Y, Song J H, Lu M P, et al.ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation[J]. ACS Nano, 2009, 3(2): 357-362. DOI: 10.1021/nn800804r.
[20] Shao L, Feng P, Liu M, et al. Interface bonding performance and enhancement mechanism of in-situ polymerization modified mortar under wet environments [J]. Journal of Southeast University(Natural Science Edition), 2023, 53(5): 749-55. DOI:10.3969/j.issn.1001-505.2023.05.001. (in Chinese)
[21] Xiong Z, Zheng K, Chen Z, et al. Design and mechanical performance analysis of a new GFRP-steel buckling restrained brace [J]. Journal of Southeast University(Natural Science Edition), 2024, 54(1): 156-166. DOI: 10.3969/j.issn.1001-0505.2024.01.020.( in Chinese)
[22] Du F, She W. Design and fabrication of bioinspired cement aerogel and its performance analysis [J]. Journal of Southeast University(Natural Science Edition), 2024, 54(2): 346-352. DOI:10.3969/j.issn.1001-0505.2024.02.011.( in Chinese)
[23] Chang C, Tran V H, Wang J B, et al. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency[J]. Nano Letters, 2010, 10(2): 726-731. DOI: 10.1021/nl9040719.
[24] Pu J, Yan X J, Jiang Y D, et al. Piezoelectric actuation of direct-write electrospun fibers[J]. Sensors and Actuators A: Physical, 2010, 164(1/2): 131-136. DOI: 10.1016/j.sna.2010.09.019.
[25] Fang J, Wang X G, Lin T. Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride)nanofibre membranes[J]. Journal of Materials Chemistry, 2011, 21(30): 11088-11091. DOI: 10.1039/C1JM11445J.
[26] Mandal D, Yoon S, Kim K J. Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene)nanofiber web-based nanogenerator and nano-pressure sensor[J]. Macromolecular Rapid Communications, 2011, 32(11): 831-837. DOI: 10.1002/marc.201100040.
[27] Liu Z H, Pan C T, Lin L W, et al. Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning[J]. Sensors and Actuators A: Physical, 2013, 193: 13-24. DOI: 10.1016/j.sna.2013.01.007.
[28] Athira B S, George A, Vaishna Priya K, et al. High-performance flexible piezoelectric nanogenerator based on electrospun PVDF-BaTiO3 nanofibers for self-powered vibration sensing applications[J]. ACS Applied Materials & Interfaces, 2022, 14(39): 44239-44250. DOI: 10.1021/acsami.2c07911.
[29] Zhao B B, Chen Z X, Cheng Z F, et al. Piezoelectric nanogenerators based on electrospun PVDF-coated mats composed of multilayer polymer-coated BaTiO3 nanowires[J]. ACS Applied Nano Materials, 2022, 5(6): 8417-8428. DOI: 10.1021/acsanm.2c01538.
[30] Liu P, Wu G, Tang B J, et al. Experimental study on mechanical properties of PVDF textile[J].Journal of Southeast University(Natural Science Edition), 2017, 47(6): 1195-1200. DOI:10.3969/j.issn.1001-0505.2017.06.018. (in Chinese)
[31] Chang J, Dommer M, Chang C, et al. Piezoelectric nanofibers for energy scavenging applications[J]. Nano Energy, 2012, 1(3): 356-371. DOI: 10.1016/j.nanoen.2012.02.003.
[32] Constantino C J L, Job A E, Simões R D, et al. Phase transition in poly(vinylidene fluoride)investigated with micro-Raman spectroscopy[J]. Applied Spectroscopy, 2005, 59(3): 275-279. DOI: 10.1366/0003702053585336.
[33] Mattsson B, Ericson H, Torell L M, et al. Micro-Raman investigations of PVDF-based proton-conducting membranes[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1999, 37(16): 3317-3327. DOI: 10.1002/(sici)1099-0518(19990815)37: 163317: aid-pola30>3.0.co;2-#.
[34] Damaraju S M, Wu S L, Jaffe M, et al. Structural changes in PVDF fibers due to electrospinning and its effect on biological function[J]. Biomedical Materials, 2013, 8(4): 045007. DOI: 10.1088/1748-6041/8/4/045007.
[35] Zhou S Y, Zhang H J, Du C Z, et al.Chitosan-doped PVDF film with enhanced electroactive β phase for piezoelectric sensing[J]. ACS Applied Electronic Materials, 2024, 6(4): 2575-2583. DOI: 10.1021/acsaelm.4c00184.
[36] Chen J, Wu S, Zhao B, et al. Temperature effect on tensile properties of warp-knitted composite fabric [J]. Journal of Southeast University(Natural Science Edition), 2020, 50(2): 251-259. DOI:10.3969/j.issn.1001-505.2020.02.007. (in Chinese)
[37] Bouhamed A, Binyu Q, Böhm B, et al. A hybrid piezoelectric composite flexible film based on PVDF-HFP for boosting power generation [J]. Compos Sci Technol, 2021, 208: 108769. DOI: 10.1016/j.compscitech.2021.108769.
[38] Wang Y R, Zheng J M, Ren G Y, et al. A flexible piezoelectric force sensor based on PVDF fabrics[J]. Smart Materials and Structures, 2011, 20(4): 045009. DOI: 10.1088/0964-1726/20/4/045009.
[39] Zheng J F, He A H, Li J X, et al. Polymorphism control of poly(vinylidene fluoride)through electrospinning[J]. Macromolecular Rapid Communications, 2007, 28(22): 2159-2162. DOI: 10.1002/marc.200700544.
[40] Ribeiro C, Sencadas V, Ribelles J L G, et al. Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride)electrospun membranes[J]. Soft Materials, 2010, 8(3): 274-287. DOI: 10.1080/1539445x.2010.495630.
[41] Liu Z H, Pan C T, Lin L W, et al. Direct-write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near-fieldelectrospinning process[J]. Smart Materials and Structures, 2014, 23(2): 025003. DOI: 10.1088/0964-1726/23/2/025003.
[42] Yu H, Huang T, Lu M X, et al. Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity[J]. Nanotechnology, 2013, 24(40): 405401. DOI: 10.1088/0957-4484/24/40/405401.
[43] Uddin A S M I, Lee D, Cho C, et al. Impact of multi-walled CNT incorporation on dielectric properties of PVDF-BaTiO3 nanocomposites and their energy harvesting possibilities[J]. Coatings, 2022, 12(1): 77. DOI: 10.3390/coatings12010077.
[44] Lee J S, Shin K Y, Cheong O J, et al. Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring[J]. Scientific Reports, 2015, 5: 7887. DOI: 10.1038/srep07887.
[45] Lee M, Chen C Y, Wang S H, et al. A hybrid piezoelectric structure for wearable nanogenerators[J]. Advanced Materials, 2012, 24(13): 1759-1764. DOI: 10.1002/adma.201200150.
[46] Li Z T, Zhang X, Li G H.In situ ZnO nanowire growth to promote the PVDF piezo phase and the ZnO-PVDF hybrid self-rectified nanogenerator as a touch sensor[J]. Physical Chemistry Chemical Physics, 2014, 16(12): 5475-5479. DOI: 10.1039/c3cp54083a.

Memo

Memo:
Biographies: Zhou Lei(1985—), female, doctor, associate professor; Ma Jian(corresponding author)male, doctor, associate professor, jian.ma@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No. 52375563), the Science and Technology on Avionics Integration Laboratory(No. 201913069001, 20200055069001).
Citation: Zhou Lei, Zhou Hexiang, Ma Jian.Electrical power generator from electrospun hybrid PVDF-BaTiO3 nanofiber membranes[J].Journal of Southeast University(English Edition), 2024, 40(4):403-409.DOI:10.3969/j.issn.1003-7985.2024.04.009.
Last Update: 2024-12-20