[1] Su Y, Yang S Q, Sun H, et al. Exploiting relevance feedback in knowledge graph search[C]// Proceedings of the 21st ACM Knowledge Discovery and Data Mining. Sydney, Australia, 2015: 1135-1144. DOI:10.1145/2783258.2783320.
[2] Suchanek F M, Kasneci G, Weikum G. YAGO: A large ontology from Wikipedia and WordNet[J]. Journal of Web Semantics, 2008, 6(3): 203-217. DOI: 10.1016/j.websem.2008.06.001.
[3] Liu L H, Chen Y Z, Das M, et al. Knowledge graph question answering with ambiguous query[C]// Proceedings of the 32nd International World Wide Web Conferences. Austin, TX, USA, 2023: 2477-2486. DOI: 10.1145/3543507.3583316.
[4] Li H Y, Zhao M, Yu W Q. A multi-attention RNN-based relation linking approach for question answering over knowledge base[J]. Journal of Southeast University(English Version), 2020, 36(4): 385-392. DOI: 10.3969/j.issn.1003-7985.2020.04.003.
[5] Zhou K, Zhao W X, Bian S Q, et al. Improving conversational recommender systems via knowledge graph based semantic fusion[C]// Proceedings of the 26th ACM Knowledge Discovery and Data Mining. Virtual Event, USA, 2020: 1006-1014. DOI: 10.1145/3394486.3403143.
[6] Wei J Q, Han S, Zou L. VISION-KG: Topic-centric visualization system for summarizing knowledge graph[C]// Proceedings of the 13th International Conference on Web Search and Data Mining. Houston, TX, USA, 2020: 857-860. DOI: 10.1145/3336191.3371863.
[7] Arenas M, Cuenca Grau B, Kharlamov E, et al. Faceted search over RDF-based knowledge graphs[J]. Journal of Web Semantics, 2016, 37/38: 55-74. DOI: 10.1016/j.websem.2015.12.002.
[8] Mailis T, Kotidis Y, Nikolopoulos V, et al. An efficient index for RDF query containment[C]//Proceedings of the 2019 International Conference on Management of Data. Amsterdam, the Netherlands, 2019: 1499-1516. DOI: 10.1145/3299869.3319864.
[9] Abdelaziz I, Harbi R, Khayyat Z, et al. A survey and experimental comparison of distributed SPARQL engines for very large RDF data[J]. Proceedings of the VLDB Endowment, 2017, 10(13): 2049-2060. DOI: 10.14778/3151106.3151109.
[10] Zeng J, U L H, Yan X, et al. Fast core-based top-k frequent pattern discovery in knowledge graphs[C]// Proceedings of the 37th IEEE International Conference on Data Engineering. Chania, Greece, 2021: 936-947. DOI: 10.1109/ICDE51399.2021.00086.
[11] Sun Y Z, Han J W, Yan X F, et al. Pathsim: Meta path-based top-k similarity search in heterogeneous information networks[C]// Proceedings of the VLDB Endowment. Seattle, WA, USA, 2011: 992-1003. DOI: 10.14778/3402707.3402736.
[12] Yang S Q, Han F Q, Wu Y H, et al. Fast top-k search in knowledge graphs[C]// Proceedings of the 32nd IEEE International Conference on Data Engineering. Helsinki, Finland, 2016: 990-1001. DOI: 10.1109/ICDE.2016.7498307.
[13] Wang Y X, Khan A, Wu T X, et al. Semantic guided and response times bounded top-k similarity search over knowledge graphs[C]// Proceedings of the 36th IEEE International Conference on Data Engineering. Dallas, TX, USA, 2020: 445-456. DOI: 10.1109/ICDE48307.2020.00045.
[14] Qin Z Y, Bai Y S, Sun Y Z. GHashing: Semantic graph hashing for approximate similarity search in graph databases[C]// Proceedings of the 26th ACM Knowledge Discovery and Data Mining. Virtual Event, USA, 2020: 2062-2072. DOI: 10.1145/3394486.3403257.
[15] Biao Y, Lin G Y, Zhang W G. Adaptive topology learning of camera network across non-overlapping views[J]. Journal of Southeast University(English Version), 2015, 31(1): 61-66. DOI: 10.3969/j.issn.1003-7985.2015.01.011.
[16] Zhao N N, Jiang R. Poisoning attack detection scheme based on data integrity sampling audit algorithm in neural network[J]. Journal of Southeast University(English Version), 2023, 39(3): 314-322. DOI: 10.3969/j.issn.1003-7985.2023.03.012.
[17] Wang Y H, He J Z, Zhang M Z, et al. Concrete crack identification in complex environments based on SSD and pruning neural network[J]. Journal of Southeast University(English Version), 2023, 39(4): 393-399. DOI: 10.3969/j.issn.1003-7985.2023.04.008.
[18] Han M, Kim H, Gu G, et al. Efficient subgraph matching: Harmonizing dynamic programming, adaptive matching order, and failing set together[C]// Proceedings of the 2019 ACM Conference on Management of Data. Amsterdam, the Netherlands, 2019: 1429-1446. DOI: 10.1145/3299869.3319880.
[19] Chen S W. Graph embedding [EB/OL].(2022)[2023-12-08]. https://github.com/shenweichen/GraphEmbedding.
[20] Khan A, Wu Y H, Aggarwal C C, et al. Nema: Fast graph search with label similarity[C]// Proceedings of the VLDB Endowment. Riva del Garda, Italy, 2013: 181-192. DOI: 10.14778/2535569.2448952.
[21] Cordella L P, Foggia P, Sansone C, et al. A(sub)graph isomorphism algorithm for matching large graphs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(10): 1367-1372. DOI: 10.1109/TPAMI.2004.75.
[22] Kim H J, Choi Y Y, Park K S, et al. Versatile equivalences: Speeding up subgraph query processing and subgraph matching[C]// Proceedings of the 2021 ACM Conference on Management of Data. Virtual Event, China, 2021: 925-937. DOI: 10.1145/3448016.3457265.