|Table of Contents|

[1] ZHANG Jing, LI Xuejian, LI Gang, YUAN Ye, et al. Plateau frequency exploration of longitudinal guided waves for stress monitoring of steel strand [J]. Journal of Southeast University (English Edition), 2025, 41 (1): 44-50. [doi:10.3969/j.issn.1003-7985.2025.01.006]
Copy

Plateau frequency exploration of longitudinal guided waves for stress monitoring of steel strand()
钢绞线应力监测的纵向超声导波平台频率获取
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
41
Issue:
2025 1
Page:
44-50
Research Field:
Traffic and Transportation Engineering
Publishing date:
2025-03-07

Info

Title:
Plateau frequency exploration of longitudinal guided waves for stress monitoring of steel strand
钢绞线应力监测的纵向超声导波平台频率获取
Author(s):
ZHANG Jing1 LI Xuejian1 LI Gang1 YUAN Ye2 YANG Dong3
1.Department of Civil Engineering, Hefei University of Technology, Hefei 230009, China
2.Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, China
3.Earthquake Engineering Research & Test Center, Guangzhou University, Guangzhou 510006, China
张静1 李雪健1 李刚1 袁冶2 杨栋3
1.合肥工业大学土木工程学院,合肥 230009
2.香港大学土木工程学院,香港 999077
3.广州大学工程抗震研究中心,广州 510006
Keywords:
steel strand ultrasonic guided wave plateau frequency mode separation stress monitoring
钢绞线超声导波平台频率模态分离应力监测
PACS:
U448
DOI:
10.3969/j.issn.1003-7985.2025.01.006
Abstract:
To tackle the issue of notch frequency and center frequency drift of the L(0,1) mode guided wave in ultrasonic guided wave‑based stress monitoring of prestressed steel strands, a method using higher‑order mode plateau frequencies is adopted. First, the correlation between group velocity peaks and phase velocities at these plateau frequencies is analyzed. This analysis establishes a quantitative relationship between phase velocity and stress in the steel strand, providing a theoretical foundation for stress monitoring. Then the two‑dimensional Fourier transform is employed to separate wave modes. Dynamic programming techniques are applied in the frequency‑velocity domain to extract higher‑order modes. By identifying the group velocity peaks of these separated higher‑order modes, the plateau frequencies of guided waves are determined, enabling indirect measurement of stress in the steel strand. To validate this method, finite element simulations are conducted under three scenarios. Results show that the higher‑order modes of transient signals from three different positions can be accurately extracted, leading to successful cable stress monitoring. This approach effectively circumvents the issue of guided wave frequency drift and improves stress monitoring accuracy. Consequently, it significantly improves the application of ultrasonic guided wave technology in structural health monitoring.
通过研究超声导波在预应力钢绞线应力监测中遇到的L(0,1)模态导波缺口频率及陷频中心漂移的问题,提出一种基于高阶模态平台频率的应力监测方法。首先分析群速度峰值与平台频率处相速度的关联特性,建立了相速度与钢绞线应力之间的定量关系,为应力监测提供理论依据;接着采用二维傅里叶变换对导波模态进行分离,在频率-波速域应用动态规划技术提取高阶模态,通过分离后的高阶模态群速度峰值确定导波平台频率,实现钢绞线应力间接测量;最后,基于有限元模型验证了3种不同工况下所提平台频率选取方法的有效性。结果表明,利用3个不同位置的瞬态信号均能从中准确提取高阶模态并实现应力监测,且可有效避免导波频率漂移的影响,提高监测准确性,有助于增强超声导波技术在结构健康监测中的应用效果。

References:

[1]MAO J X, KE X D, SU X, et al. Fatigue performance analysis of suspenders of a long span suspension bridge under monitored traffic flow[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(4): 952‑960. (in Chinese)
[2]TAO T Y, GAO W J, JIANG Z X, et al. Analysis on wind‑induced vibration and its influential factors of long suspenders in the wake of bridge tower[J]. Journal of Southeast University (Natural Science Edition), 2023, 53(6): 1065‑1071. (in Chinese)
[3]WAN S P, FANG Z F, ZHOU H J, et al. Experimental study on static tensile and acoustic emission monitoring of corroded steel wires and cables[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(3): 567‑577. (in Chinese)
[4]CHEN X H, XU J, LI Y, et al. Characteristic parameters of magnetostrictive guided wave testing for fatigue damage of steel strands[J]. Materials, 2023, 16(15): 5215.
[5]CHEN H L R, HE Y D, GANGARAO H V. Measurement of prestress force in the rods of stressed timber bridges using stress waves[J]. Materials Evaluation, 1998, 56(8): 977‑981.
[6]LAGUERRE L, TREYSSEDE F. Non destructive evaluation of seven‑wire strands using ultrasonic guided waves[J]. European Journal of Environmental and Civil Engineering, 2011, 15(4): 487‑500.
[7]ŠEŠTOKĖ J, JASIŪNIENĖ E, ŠLITERIS R, et al. Exciting and detecting higher‑order guided lamb wave modes in high‑density polyethylene structures using ultrasonic methods[J]. Materials, 2023, 17(1): 163.
[8]ERVIN B L, KUCHMA D A, BERNHARD J T, et al. Monitoring corrosion of rebar embedded in mortar using high‑frequency guided ultrasonic waves[J]. Journal of Engineering Mechanics, 2009, 135(1): 9‑19.
[9]PAVLAKOVIC B N, LOWE M J S, CAWLEY P. High‑frequency low‑loss ultrasonic modes in imbedded bars[J]. Journal of Applied Mechanics, 2001, 68(1): 67‑75.
[10]AERON S, BOSE S, VALERO H P. Joint multi‑mode dispersion extraction in frequency‑wavenumber and space‑time domains[J]. IEEE Transactions on Signal Processing, 2015, 63(15): 4115‑4128.
[11]DRAUDVILIENĖ L, MEŠKUOTIENĖ A, RAIŠUTIS R, et al. Accuracy assessment of the 2D‑FFT method based on peak detection of the spectrum magnitude at the particular frequencies using the lamb wave signals[J]. Sensors, 2022, 22(18): 6750.
[12]MICHAELS T E, MICHAELS J E, RUZZENE M. Frequency‑wavenumber domain analysis of guided wavefields[J]. Ultrasonics, 2011, 51(4): 452‑466.
[13]AGGELIS D G, KLEITSA D, IWAMOTO K, et al. Elastic wave simulation in ground anchors for the estimation of pre‑stress[J]. Tunnelling and Underground Space Technology, 2012, 30: 55‑63.
[14]THOMSON W T. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Physics, 1950, 21(2): 89‑93.
[15]KNOPOFF L. A matrix method for elastic wave problems[J]. Bulletin of the Seismological Society of America, 1964, 54(1): 431‑438.
[16]PAO Y H, SACHSE W, FUKUOKA H. Acoustoelasticity and ultrasonic measurements of residual stresses[J]. Physical Acoustics, 1984, 17: 61‑143.
[17]ROSE J L, NAGY P B. Ultrasonic waves in solid media[J]. The Journal of the Acoustical Society of America, 2000, 107(4): 1807‑1808.
[18]DUBUC B, EBRAHIMKHANLOU A, SALAMONE S. Higher order longitudinal guided wave modes in axially stressed seven‑wire strands[J]. Ultrasonics, 2018, 84: 382‑391.
[19]CHEN H L R, WISSAWAPAISAL K. Measurement of tensile forces in a seven‑wire prestressing strand using stress waves[J]. Journal of Engineering Mechanics, 2001, 127(6): 599‑606.
[20]LI G, ZHANG J, CHENG J K, et al. Multi‑order mode excitation and separation of ultrasonic guided waves in rod structures using 2D‑FFT[J]. Sensors, 2023, 23(20): 8483.

Memo

Memo:
Received 2024-06-01,Revised 2024-08-21.
Biographies:Zhang Jing (1984—), female, doctor, associate professor;Yuan Ye (corresponding author), male, doctor, fredyhku@connect.hku.hk.
Foundation item:The National Natural Science Foundation of China (No.52278303).
Citation:ZHANG Jing,LI Xuejian,LI Gang,et al.Plateau frequency exploration of longitudinal guided waves for stress monitoring of steel strand[J].Journal of Southeast University (English Edition),2025,41(1):44-50.DOI:10.3969/j.issn.1003-7985.2025.01.006.DOI:10.3969/j.issn.1003-7985.2025.01.006
Last Update: 2025-03-20