|Table of Contents|

[1] Wu Juan, Han Xiao, Yang Huaining,. An improved 3D shape haptic rendering algorithmfor finger mounted vibrotactile device [J]. Journal of Southeast University (English Edition), 2018, 34 (3): 317-322. [doi:10.3969/j.issn.1003-7985.2018.03.006]

An improved 3D shape haptic rendering algorithmfor finger mounted vibrotactile device()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2018 3
Research Field:
Mechanical Engineering
Publishing date:


An improved 3D shape haptic rendering algorithmfor finger mounted vibrotactile device
Wu Juan Han Xiao Yang Huaining
State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
finger mounted vibrotactile device 3D shape haptic rendering algorithm contact status local gradient
To improve the sense of reality on perception, an improved algorithm of 3D shape haptic rendering is put forward based on a finger mounted vibrotactile device. The principle is that the interactive information and the shape information are conveyed to users when they touch virtual objects at mobile terminals by attaching the vibrotactile feedback on a fingertip. The extraction of shape characteristics, the interactive information and the mapping of shape in formation of vibration stimulation are key parts of the proposed algorithm to realize the real tactile rendering. The contact status of the interaction process, the height information and local gradient of the touch point are regarded as shape information and used to control the vibration intension, rhythm and distribution of the vibrators. With different contact status and shape information, the vibration pattern can be adjusted in time to imitate the outlines of virtual objects. Finally, the effectiveness of the algorithm is verified by shape perception experiments. The results show that the improved algorithm is effective for 3D shape haptic rendering.


[1] Sra M, Schmandt C. Expanding social mobile games beyond the device screen[J].Personal and Ubiquitous Computing, 2015, 19(3/4): 495-508. DOI:10.1007/s00779-015-0845-0.
[2] Lohr M. Apps versus demonstration experiments: Improvement of quality of physics teaching in secondary education by the use of tablets[C]//IEEE International Conference on Interactive Mobile Communication Technologies and Learning. Thessaloniki, Greece, 2015:226-231. DOI:10.1109/IMCTL.2014.7011137.
[3] Jayant C, Acuario C, Johnson W, et al. V-braille: Haptic braille perception using a touch-screen and vibration on mobile phones[C]// International ACM SIGACCESS Conference on Computers and Accessibility. Orlando, FL, USA, 2010:295-296. DOI:10.1145/1878803.1878878.
[4] Muniandy M, Ee W K. User’s perception on the application of haptics in mobile e-commerce[C]// IEEE International Conference on Research and Innovation in Information Systems. Kuala Lumpur, Malaysia, 2014:91-96. DOI:10.1109/ICRIIS.2013.6716691.
[5] Wijntjes M W A, Sato A, Hayward V, et al. Local surface orientation dominates haptic curvature discrimination[J].IEEE Transactions on Haptics, 2009, 2(2): 94-102. DOI:10.1109/toh.2009.1.
[6] Gordon I E, Morison V. The haptic perception of curvature[J].Perception & Psychophysics, 1982, 31(5): 446-450. DOI:10.3758/bf03204854.
[7] Minsky M, Ming O Y, Steele O, et al. Feeling and seeing: Issues in force display[J].ACM SIGGRAPH Computer Graphics, 1990, 24(2): 235-241. DOI:10.1145/91394.91451.
[8] Pont S C, Kappers A M L, Koenderink J J. Similar mechanisms underlie curvature comparison by static and dynamic touch[J].Perception & Psychophysics, 1999, 61(5): 874-894. DOI:10.3758/bf03206903.
[9] Mullenbach J, Shultz C, Piper A M, et al. Surface haptic interactions with a TPad tablet[C]// Proceedings of the Adjunct Publication of the 26th Annual ACM Symposium on User Interface Software and Technology. St Andrews, UK, 2013:7-8. DOI:10.1145/2508468.2514929.
[10] Pacchierotti C, Salvietti G, Hussain I, et al. The hRing: A wearable haptic device to avoid occlusions in hand tracking[C]// IEEE Haptics Symposium. Philadelphia, USA, 2016: 134-139. DOI:10.1109/HAPTICS.2016.7463167.
[11] Karlin S. Tactus technology [J]. IEEE Spectrum, 2013, 50(4): 23. DOI:10.1109/mspec.2013.6481691.
[12] Yang T H, Kim S Y, Kim C H, et al. Development of a miniature pin-array tactile module using elastic and electromagnetic force for mobile devices [C]// World Haptics 2009—Third Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Salt Lake City, UT, USA, 2009: 13-17. DOI:10.1109/WHC.2009.4810818.
[13] Sarakoglou I, Garcia-Hernandez N, Tsagarakis N G, et al. A high performance tactile feedback display and its integration in teleoperation[J].IEEE Transactions on Haptics, 2012, 5(3): 252-263. DOI:10.1109/toh.2012.20.
[14] Zhong X J, Wu J, Han X, et al. Mobileterminals haptic interface: A vibro-tactile finger device for 3D shape rendering[C]// Proceedings of the 10th International Conference on Intelligent Robotics and Applications. Wuhan, China, 2017: 361-372. DOI:10.1007/978-3-319-65289-4_35.


Biography: Wu Juan(1978—), female, doctor, professor, juanwuseu@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No. 61473088), Six Talent Peaks Projects in Jiangsu Province.
Citation: Wu Juan, Han Xiao, Yang Huaining. An improved 3D shape haptic rendering algorithm for finger mounted vibrotactile device[J].Journal of Southeast University(English Edition), 2018, 34(3):317-322.DOI:10.3969/j.issn.1003-7985.2018.03.006.
Last Update: 2018-09-20