|Table of Contents|

[1] Chen Chen, Pan Lei, Kwang Y. Lee, et al. Min-max fuzzy model predictive tracking controlof boiler-turbine system for ultra-supercritical units [J]. Journal of Southeast University (English Edition), 2021, (1): 42-51. [doi:10.3969/j.issn.1003-7985.2021.01.006]
Copy

Min-max fuzzy model predictive tracking controlof boiler-turbine system for ultra-supercritical units()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
Issue:
2021年第1期
Page:
42-51
Research Field:
Computer Science and Engineering
Publishing date:
2021-03-20

Info

Title:
Min-max fuzzy model predictive tracking controlof boiler-turbine system for ultra-supercritical units
Author(s):
Chen Chen1 2 Pan Lei1 2 Kwang Y. Lee3
1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
2School of Energy and Environment, Southeast University, Nanjing 210096, China
3Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798-7356, USA
Keywords:
ultra-supercritical boiler-turbine system T-S model min-max model predictive control output tracking linear matrix inequality
PACS:
TP391
DOI:
10.3969/j.issn.1003-7985.2021.01.006
Abstract:
To improve the control performance of nonlinear ultra-supercritical(USC)thermal power units, an improved min-max fuzzy model predictive tracking control(FMPTC)strategy is proposed. First, a T-S fuzzy model is established to approximate the dynamics of the nonlinear boiler-turbine system. Then, based on an extended fuzzy model containing state variables and output variables, a min-max FMPTC is derived for output regulation while ensuring the closed-loop system stability and the inputs in their given constraints. For greater controller design freedom, the developed controller adopts a new state- and output-based objective function. In addition, the observer estimation error is regarded as a bounded disturbance, ensuring the stability of the entire closed-loop control system. Simulation results on a 1 000 MW USC boiler-turbine model illustrate the effectiveness of the proposed approach.

References:

[1] Pan L, Shen J, Wu X, et al. Improved internal-model robust adaptive control with its application to coordinated control of USC boiler-turbine power units in flexible operations[J].International Journal of Systems Science, 2020, 51(4): 669-686. DOI:10.1080/00207721.2020.1737267.
[2] Chen C, Pan L, Liu S J, et al. A sustainable power plant control strategy based on fuzzy extended state observer and predictive control[J].Sustainability, 2018, 10(12): 4824. DOI:10.3390/su10124824.
[3] Pan L, Luo J, Cao C Y, et al. L1 adaptive control for improving load-following capability of nonlinear boiler-turbine units in the presence of unknown uncertainties[J].Simulation Modelling Practice and Theory, 2015, 57: 26-44. DOI:10.1016/j.simpat.2015.05.012.
[4] Kong X B, Liu X J, Lee K Y. An effective nonlinear multi-variable HMPC for USC power plant incorporating NFN-based modeling[J]. IEEE Transactions on Industrial Informatics, 2016, 12(2): 555-566. DOI:10.1109/TII.2016.2520579.
[5] Moon U C, Lee K Y. Step-response model development for dynamic matrix control of a drum-type boiler-turbine system[J]. IEEE Transactions on Energy Conversion, 2009, 24(2): 423-430. DOI:10.1109/TEC.2009.2015986.
[6] Hou G L, Xi Y, Liu J B, et al. Simulation research of the multi-variable generalized predictive control in 500 MW unit plant coordinated control system[C]//The 2011 International Conference on Advanced Mechatronic Systems. Zhengzhou, China, 2011: 196-201.
[7] Zhang F, Shen J, Li Y G, et al. Nonlinear model predictive control of ultra-supercritical once through boiler-turbine unit[C]//2015 Chinese Automation Congress. Wuhan, China, 2015: 2194-2198. DOI:10.1109/CAC.2015.7382868.
[8] Liu X J, Guan P, Chan C W. Nonlinear multi-variable power plant coordinate control by constrained predictive scheme[J]. IEEE Transactions on Control Systems Technology, 2010, 18(5): 1116-1125. DOI:10.1109/TCST.2009.2034640.
[9] Liu X J, Jiang D, Lee K Y. Quasi-min-max fuzzy MPC of UTSG water level based on off-line invariant set[J]. IEEE Transactions on Nuclear Science, 2015, 62(5): 2266-2272. DOI:10.1109/TNS.2015.2466658.
[10] Cui J H, Chai T Y, Liu X J. Deep-neural-network-based economic model predictive control for ultrasupercritical power plant[J]. IEEE Transactions on Industrial Informatics, 2020, 16(9): 5905-5913. DOI:10.1109/TII.2020.2973721.
[11] Ding B C. Dynamic output feedback predictive control for nonlinear systems represented by a Takagi-Sugeno model[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(5): 831-843. DOI:10.1109/TFUZZ.2011.2147320.
[12] Ding B C, Ping X B. Output feedback predictive control with one free control move for nonlinear systems represented by a Takagi-Sugeno model[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(2): 249-263. DOI:10.1109/TFUZZ.2013.2251637.
[13] Kothare M V, Balakrishnan V, Morari M. Robust constrained model predictive control using linear matrix inequalities[J]. Automatica, 1996, 32(10): 1361-1379. DOI:10.1016/0005-1098(96)00063-5.
[14] Tseng C S, Chen B S, Uang H J. Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model[J]. IEEE Transactions on Fuzzy Systems, 2001, 9(3): 381-392. DOI:10.1109/91.928735.
[15] Wu X, Shen J, Li Y G, et al. Fuzzy modeling and stable model predictive tracking control of large-scale power plants[J]. Journal of Process Control, 2014, 24(10): 1609-1626. DOI:10.1016/j.jprocont.2014.08.007.
[16] Zhang T J, Feng G, Zeng X J. Output tracking of constrained nonlinear processes with offset-free input-to-state stable fuzzy predictive control[J]. Automatica, 2009, 45(4): 900-909. DOI:10.1016/j.automatica.2008.11.016.
[17] Zhang F, Wu X, Shen J. Extended state observer based fuzzy model predictive control for ultra-supercritical boiler-turbine unit[J]. Applied Thermal Engineering, 2017, 118: 90-100. DOI:10.1016/j.applthermaleng.2017.01.111.
[18] Kong L, Yuan J Q. Generalized discrete-time nonlinear disturbance observer based fuzzy model predictive control for boiler-turbine systems[J]. ISA Transactions, 2019, 90: 89-106. DOI:10.1016/j.isatra.2019.01.003.
[19] Wu S, Jin Q B, Zhang R D, et al. Improved design of constrained model predictive tracking control for batch processes against unknown uncertainties[J]. ISA Transactions, 2017, 69: 273-280. DOI:10.1016/j.isatra.2017.04.006.
[20] Zhang R D, Wu S, Cao Z X, et al. A systematic min-max optimization design of constrained model predictive tracking control for industrial processes against uncertainty[J]. IEEE Transactions on Control Systems Technology, 2018, 26(6): 2157-2164. DOI:10.1109/TCST.2017.2748059.
[21] Liu J Z, Yan S, Zeng D L, et al. A dynamic model used for controller design of a coal fired once-through boiler-turbine unit[J]. Energy, 2015, 93: 2069-2078. DOI:10.1016/j.energy.2015.10.077.
[22] Ding B C, Xi Y G, Li S Y. A synthesis approach of on-line constrained robust model predictive control[J]. Automatica, 2004, 40(1): 163-167. DOI:10.1016/j.automatica.2003.07.007.

Memo

Memo:
Biographies: Chen Chen(1991—), male, Ph. D. candidate; Pan Lei(corresponding author), female, doctor, professor, panlei@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No. 51936003).
Citation: Chen Chen, Pan Lei, Kwang Y. Lee.Min-max fuzzy model predictive tracking control of boiler-turbine system for ultra-supercritical units[J].Journal of Southeast University(English Edition), 2021, 37(1):42-51.DOI:10.3969/j.issn.1003-7985.2021.01.006.
Last Update: 2021-03-20