|Table of Contents|

[1] Liang Wenqing, , Lei Gang, et al. Impact of a background velocity field on solidification growthof single-crystal nuclei using the PF-LBM [J]. Journal of Southeast University (English Edition), 2022, 38 (4): 373-382. [doi:10.3969/j.issn.1003-7985.2022.04.006]

Impact of a background velocity field on solidification growthof single-crystal nuclei using the PF-LBM()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2022 4
Research Field:
Energy and Power Engineering
Publishing date:


Impact of a background velocity field on solidification growthof single-crystal nuclei using the PF-LBM
Liang Wenqing 1 2 3 Lei Gang2 Xun Qining4 Shu Zhiyong1 3 Wang Tianxiang2Qian Hua1 Zhao Dongliang1 Zheng Xiaohong1
1 School of Energy and Environment, Southeast University, Nanjing 210096, China
2 State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing 100028, China
3 State Key Laboratory of Technologies in Space Cryogenic Propellants-SEU Research Center, Nanjing 210096, China
4 Shandong Institute of Non-metallic Materials, Jinan 250031, China
single-crystal nucleus coupled velocity field simulation lattice Boltzmann method
To promote/inhibit ice formation in the natural environment and industrial systems, the growth and evolution process of ice single-crystal nuclei were simulated using the phase field-lattice Boltzmann method(PF-LBM), and the influence of a background flow field on the growth of single-crystal nucleus dendrites was also analyzed. The results show that the flow field makes dendrite growth asymmetric. The growth of dendrites is more developed on the upstream side than on the downstream side. The dendrite tip growth rate and tip radius are greater on the upstream side than on the downstream side. The solid phase ratio is greater with a background flow field than without one. The higher the flow velocity is, the more developed the dendrites on the upstream side, the faster the dendrites grow, and the higher the dendrite tip growth rate. The dendrites on the backflow side have a lower flow rate and a lower degree of supercooling than those on the upstream side, which inhibits the solidification process, the growth rate is slow, and the dendrites are underdeveloped.


[1] Qian J F, Zhang J L. Feasibility analysis of urban sewage source heat pump system with freezing latent heat collection[J].Journal of Southeast University(English Edition), 2010(2): 324-326. DOI: 10.3969/j.issn.1003-7985.2010.02.040.
[2] Cao Y H, Tan W Y, Wu Z L. Aircraft icing: An ongoing threat to aviation safety[J].Aerospace Science and Technology, 2018, 75: 353-385. DOI:10.1016/j.ast.2017.12.028.
[3] Li Q, Sun G X, Luo S, et al. Evaluation of rutting and low-temperature cracking resistances of warm-mix recycled asphalt binders under the secondary aging condition[J]. Journal of Southeast University(English Edition), 2020, 36(1): 81-87. DOI: 10.3969/j.issn.1003-7985.2020.01.011.
[4] Huige N. Nucleation and growth of ice crystals from water and sugar solutions in continuous sturred tank crystallizers[D]. Eindhoven, The Kingdom of the Netherlands: Eindhoven University of Technology, 1972.
[5] Yokoyama E, Yoshizaki I, Shimaoka T, et al. Measurements of growth rates of an ice crystal from supercooled heavy water under microgravity conditions: Basal face growth rate and tip velocity of a dendrite[J]. The Journal of Physical Chemistry B, 2011, 115(27): 8739-8745. DOI:10.1021/jp110634t.
[6] Ninagawa T, Eguchi A, Kawamura Y, et al. A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera[J]. Cryobiology, 2016, 73(1): 20-29. DOI:10.1016/j.cryobiol.2016.06.003.
[7] Kielar J J, Lemaitre P, Gobin C, et al. Simultaneous interferometric in-focus and out-of-focus imaging of ice crystals[J]. Optics Communications, 2016, 372: 185-195. DOI:10.1016/j.optcom.2016.04.004.
[8] Yasuda H, Yamamoto Y, Nakatsuka N, et al.In situ observation of solidification phenomena in Al-Cu and Fe-Si-Al alloys[J]. International Journal of Cast Metals Research, 2009, 22(1/2/3/4): 15-21. DOI:10.1179/136404609X368118.
[9] Guo Q, Cheng P. Numerical investigations of six-fold dendritic icing process in subcooled water subject to natural and forced convective environments[J].International Journal of Heat and Mass Transfer, 2019, 145: 118658. DOI:10.1016/j.ijheatmasstransfer.2019.118658.
[10] Kobayashi R. Modeling and numerical simulations of dendritic crystal growth[J].Physica D: Nonlinear Phenomena, 1993, 63(3/4): 410-423. DOI:10.1016/0167-2789(93)90120-P.
[11] Wheeler A A, Murray B T, Schaefer R J. Computation of dendrites using a phase field model[J]. Physica D: Nonlinear Phenomena, 1993, 66(1/2): 243-262. DOI:10.1016/0167-2789(93)90242-S.
[12] Penrose O, Fife P C. Thermodynamically consistent models of phase-field type for the kinetic of phase transitions[J].Physica D: Nonlinear Phenomena, 1990, 43(1): 44-62. DOI:10.1016/0167-2789(90)90015-H.
[13] Wheeler A A, Boettinger W J, McFadden G B. Phase-field model for isothermal phase transitions in binary alloys[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1992, 45(10): 7424-7439. DOI:10.1103/physreva.45.7424.
[14] Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys[J].Physical Review E, 1999, 60(6): 7186-7197. DOI:10.1103/physreve.60.7186.
[15] Qin R S, Wallach E R, Thomson R C. A phase-field model for the solidification of multicomponent and multiphase alloys[J].Journal of Crystal Growth, 2005, 279(1/2): 163-169. DOI:10.1016/j.jcrysgro.2005.02.005.
[16] Luo S, Wang P, Wang W L, et al. PF-LBM modelling of dendritic growth and motion in an undercooled melt of Fe-C binary alloy[J].Metallurgical and Materials Transactions B, 2020, 51(5): 2268-2284. DOI:10.1007/s11663-020-01925-6.
[17] Kan A K, Mao S, Wang N, et al. Simulation and experimental study on thermal conductivity ofnano-granule porous material based on lattice-boltzmann method[J]. Journal of Thermal Science, 2021, 30(1): 248-256. DOI:10.1007/s11630-019-1218-1.
[18] Taher M A, Kim H D, Lee Y W. Study of thermal and hydraulic performances of circular and square ribbed rough microchannels using LBM[J].Journal of Thermal Science, 2015, 24(6): 549-556. DOI:10.1007/s11630-015-0821-z.
[19] Xin F, Li X F, Xu M, et al. Simulation of gas exothermic chemical reaction in porous media reactor with latticeBoltzmann method[J]. Journal of Thermal Science, 2013, 22(1): 42-47. DOI:10.1007/s11630-013-0590-5.
[20] Yang B, Wu W, Li M D, et al. A multiple-relaxation-time lattice Boltzmann model for natural convection in a hydrodynamically and thermally anisotropic porous medium under local thermal non-equilibrium conditions[J]. Journal of Thermal Science, 2020, 29(3): 609-622. DOI:10.1007/s11630-020-1169-6.
[21] Alexandrov D V, Galenko P K. Dendritic growth with the six-fold symmetry: Theoretical predictions and experimental verification[J]. Journal of Physics and Chemistry of Solids, 2017, 108: 98-103. DOI:10.1016/j.jpcs.2017.04.016.
[22] McNamara G R, Zanetti G. Use of the Boltzmann equation to simulate lattice gas automata[J].Physical Review Letters, 1988, 61(20): 2332-2335. DOI:10.1103/PhysRevLett.61.2332.
[23] Zou Q S, He X Y. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J].Physics of Fluids, 1997, 9(6): 1591-1598. DOI:10.1063/1.869307.
[24] Bouissou P, Perrin B, Tabeling P. Influence of an external flow on dendritic crystal growth[J]. Physical Review A, 1989, 40(1): 509-510. DOI:10.1103/physreva.40.509.
[25] Lipton J, Glicksman M E, Kurz W. Dendritic growth into undercooled alloy metals[J]. Materials Science and Engineering, 1984, 65(1): 57-63. DOI:10.1016/0025-5416(84)90199-X.
[26] Tao L R, Hua Z Z. A microscopic study of the crystallization in cryoprotectent agents[J]. Journal of Engineering Thermophysics, 2001(4): 481-484. DOI:10.3321/j.issn:0253-231X.2001.04.025. (in Chinese)
[27] Koo K K, Ananth R, Gill W N. Thermal convection, morphological stability and the dendritic growth of crystals[J]. AIChE Journal, 1992, 38(6): 945-954. DOI:10.1002/aic.690380615.
[28] Sakane S, Takaki T, Ohno M, et al. Three-dimensional morphologies of inclined equiaxed dendrites growing under forced convection by phase-field-lattice Boltzmann method[J]. Journal of Crystal Growth, 2018, 483: 147-155. DOI:10.1016/j.jcrysgro.2017.11.029.


Biographies: Liang Wenqing(1977—), male, doctor, lecturer; Zheng Xiaohong(corresponding author), female, doctor, associate professor, xhzheng@seu.edu.cn.
Foundation item: The National Key Research and Development Program of China(No.2020YFB1506203).
Citation: Liang Wenqing, Lei Gang, Xun Qining, et al. Impact of a background velocity field on solidification growth of single-crystal nuclei using the PF-LBM[J].Journal of Southeast University(English Edition), 2022, 38(4):373-382.DOI:10.3969/j.issn.1003-7985.2022.04.006.
Last Update: 2022-12-20