[1] Lin H, Antsaklis P J. Stability and stabilizability of switched linear systems: a survey of recent results [J].IEEE Trans Automat Control, 2009, 54(2): 308-322.
[2] Curtain R F, Zwart H. An introduction to infinite dimensional linear system theory [M]. New York: Springer, 1995.
[3] Luo Z H, Guo B Z, Morgul O. Stability and stabilization for infinite dimensional systems with applications [M]. London: Springer, 1999.
[4] Liberzon D. Switching in systems and control [M]. Boston: Birkhauser, 2003.
[5] Liberzon D, Morse A S. Basic problems in stability and design of switched systems [J]. IEEE Contr Syst Mag, 1999, 19(10): 59-70.
[6] Decarlo R A, Branicky M S, Pettersson S, et al. Perspectives and results on the stability and stabilizability of hybrid systems[J]. Proceedings of IEEE, 2000, 88(7): 1069-1082.
[7] Sun Z, Ge S S. Switched linear systems: control and design [M]. Berlin: Springer-Verlag, 2004.
[8] Narendra K S, Balakrishnan J. A common Lyapunov function for stable LTI systems with commuting A-matrices [J]. IEEE Trans Automat Control, 1994, 39(12): 2469-2471.
[9] Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems [J]. IEEE Trans Automat Control, 1998, 43(4):186-200.
[10] Cheng D, Guo L. Stabilization of switched linear systems [J]. IEEE Trans Automat Control, 2005, 50(5): 661-666.
[11] Geromel J, Colaneri P. Stability and stabilization of continuous time switched linear systems [J]. SIAM Journal on Control and Optimization, 2006, 45(5):1915-1930.
[12] Chen Y, Fei S, Zhang K, et al. Control of switched linear systems with actuator saturation and its applications [J]. Mathematical and Computer Modelling, 2012, 56(1/2): 14-26.
[13] Allerhand L, Shaked U. Robust stability and stabilization of linear switched systems with dwell time [J]. IEEE Trans Automat Control, 2011, 56(2): 381-386.
[14] Farra N, Christofides P. Coordinating feedback and switching for control of spatially distributed processes [J]. Computers and Chemical Engineering, 2004, 28(1/2): 111-128.
[15] Sasane A. Stability of switching infinite-dimensional systems [J]. Automatica, 2005, 41(1): 75-78.
[16] Michel A, Sun Y. Stability of discontinuous cauchy problems in Banach space [J]. Nonlinear Analysis, 2006, 65(9): 1805-1832.
[17] Prieur C, Girard A, Witrant E. Lyapunov functions for switched linear hyperbolic systems [C]//The 4th IFAC Conference on Analysis and Design of Hybrid Systems. Eindhoven, Netherlands, 2012:382-387.
[18] Hante F, Sigalotti M. Converse Lyapunov theorems for switched systems in Banach and Hilbert Spaces [J]. SIAM Journal on Control and Optimization, 2011, 49(2): 752-770.
[19] Amin S, Hante F, Bayen A. Exponential stability of switched linear hyperbolic initial-boundary value problems [J]. IEEE Trans Automat Control, 2012, 57(2): 291-301.
[20] Ouzahra M. Global stabilization of semilinear systems using switching controls [J]. Automatica, 2012, 48(5): 837-843.
[21] Dong X, Wen R, et al. Feedback stabilization for a class of distributed parameter switched systems with time delay [J]. Journal of Applied Sciences—Electronics and Information Engineering, 2011, 29(1):92-96.
[22] Ahmed N U. Semigroup theory with applications to system and control [M]. New York: Longman Scientific Technical, 1991.
[23] Tucsnak M, Weiss G. Observation and control for operator semigroups [M]. Basel: Birkhauser Verlag, 2009.
[24] Chen Z. Partial differential equations[M].2nd Ed. Beijing: University of Science and Technology of China Press, 2002.(in Chinese)
[25] Fridman E, Orlov Y. Exponential stability of linear distributed parameter systems with time-varying delays [J]. Automatica, 2009, 45(1):194-201.
[26] Tai Z, Lun S. Absolute mean square exponential stability of Lur’e stochastic distributed parameter control systems [J]. Applied Mathematics Letters, 2012, 25(3): 115-119.