|Table of Contents|

[1] Zhao Guosheng, Ren Mengqi, Wang Jian, Liao Yiwei, et al. Modeling and analysis of cloud computing system survivabilitybased on Bio-PEPA [J]. Journal of Southeast University (English Edition), 2018, 34 (1): 21-27. [doi:10.3969/j.issn.1003-7985.2018.01.004]
Copy

Modeling and analysis of cloud computing system survivabilitybased on Bio-PEPA()
基于Bio-PEPA的云计算系统可生存性建模和分析
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
34
Issue:
2018 1
Page:
21-27
Research Field:
Computer Science and Engineering
Publishing date:
2018-03-20

Info

Title:
Modeling and analysis of cloud computing system survivabilitybased on Bio-PEPA
基于Bio-PEPA的云计算系统可生存性建模和分析
Author(s):
Zhao Guosheng1, Ren Mengqi1, Wang Jian2, Liao Yiwei1
1College of Computer Science and Information Engineering, Harbin Normal University, Harbin 150025, China
2School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
赵国生1, 任孟其1, 王健2, 廖祎玮1
1哈尔滨师范大学计算机科学与信息工程学院, 哈尔滨 150025; 2哈尔滨理工大学计算机科学与技术学院, 哈尔滨 150080
Keywords:
cloud computing system Bio-PEPA(biological-performance evaluation process algebra) survivability stochastic simulation
云计算系统 Bio-PEPA 可生存性 随机模拟
PACS:
TP309
DOI:
10.3969/j.issn.1003-7985.2018.01.004
Abstract:
For the cloud computing system, combined with the memory function and incomplete matching of the biological immune system, a formal modeling and analysis method of the cloud computing system survivability is proposed by analyzing the survival situation of critical cloud services. First, on the basis of the SAIR(susceptible, active, infected, recovered)model, the SEIRS(susceptible, exposed, infected, recovered, susceptible)model and the vulnerability diffusion model of the distributed virtual system, the evolution state of the virus is divided into six types, and then the diffusion rules of the virus in the service domain of the cloud computing system and the propagation rules between service domains are analyzed. Finally, on the basis of Bio-PEPA(biological-performance evaluation process algebra), the formalized modeling of the survivability evolution of critical cloud services is made, and the SLIRAS(susceptible, latent, infected, recovered, antidotal, susceptible)model is obtained. Based on the stochastic simulation and the ODEs(ordinary differential equations)simulation of the Bio-PEPA model, the sensitivity parameters of the model are analyzed from three aspects, namely, the virus propagation speed of inter-domain, recovery ability and memory ability. The results show that the proposed model has high approximate fitting degree to the actual cloud computing system, and it can well reflect the survivable change of the system.
面向云计算系统, 结合生物免疫系统的记忆功能以及不完全匹配性, 通过对关键云服务可生存态势的分析, 提出了一种云计算系统可生存性的形式化建模与分析方法.首先, 在SAIR模型、SEIRS模型和分布式虚拟化系统脆弱性扩散模型的基础上, 将病毒演化状态分为6种类型, 然后分析了病毒在云计算系统服务域内的扩散规则和服务域间的传播规则.最后, 基于Bio-PEPA对关键云服务可生存性态势演化进行形式化建模, 得到SLIRAS模型.基于随机模拟和Bio-PEPA模型的ODEs模拟, 从病毒的域间传播速率、修复能力、记忆能力3个方面对模型敏感参数进行了试验分析.结果表明, 所建立的模型与实际云计算系统的可生存性态势近似拟合度高, 能够很好地反映系统可生存性的变化.

References:

[1] Westmark V R. A definition for information system survivability [C]//Proceedings of the 37th Annual Hawaii International Conference on System Science. Washington, DC, USA: IEEE Computer Society, 2004: 2086-2096.DOI:10.1109/HICSS.2004. 1265710.
[2] Mell P, Grance T. The NIST definition of cloud computing[J]. Communications of the ACM, 2011, 53(6): 50-50. DOI: 10.6028/NIST.SP.800-145.
[3] Chang X L, Zhang Z J, Li X D, et al. Model-based survivability analysis of a virtualized system[C]//IEEE 41st Conference on Local Computer Networks(LCN). Dubai, United Arab Emirates, 2016: 611-614. DOI:10.1109/LCN. 2016. 104.
[4] Jin Y L, Zhou X Q, Bai Z S, et al. Survivability-aware topology evolution model with link and node deletion in wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2014, 10(4): 278629. DOI:10.1155/2014/278629.
[5] Zhou J A, Miao H K, Kai J Y, et al. Survivability prediction of web system based on log statistics[C]//IEEE ACIS 16th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing(SNPD). Takamatsu, Japan, 2015: 15359578. DOI:10.1109/SNPD.2015.7176170.
[6] Alobaidi I A, Sarvestani S S, Hurson A R. Survivability analysis and recovery support for smart grids[C]// 2016 Resilience Week(RWS). Chicago, IL, USA, 2016:33-39. DOI:10.1109/rweek.2016.7573303.
[7] Moldovan R D, Todoran E N. Immune system modeling and analysis using Bio-PEPA[C]//IEEE International Conference on Intelligent Computer Communication and Processing. Cluj-Napoca, Romania, 2015: 475-482. DOI:10.1109/iccp.2015.7312706.
[8] Tan Y, Zhang P. Immune based computer virus detection approaches[J]. CAAI Transactions on Intelligent System, 2013, 8(1): 80-94. DOI:10.3969/j.issn.1673-4785.201209059.
[9] Piqueira J R C, de Vasconcelos A A, Gabriel C E C J, et al. Dynamic models for computer viruses[J]. Computers & Security, 2008, 27(7): 355-359. DOI:10.1016/j.cose.2008.07.006.
[10] Li J, Yang Y, Zhou Y. Global stability of an epidemic model with latent stage and vaccination[J]. Nonlinear Analysis: Real World Applications, 2011, 12(4): 2163-2173. DOI:10.1016/j.nonrwa.2010.12.030.
[11] Lü H W, Wang H Q, Lin J Y, et al. A vulnerability propagation model of distributed virtualized systems based on Bio-PEPA[J]. Chinese Journal of Computers, 2016, 39(2): 391-404. DOI:10.11897/SP.J.1016.2016.00391. (in Chinese)
[12] Ciocchetta F, Hillston J. Bio-PEPA: A framework for the modelling and analysis of biological systems[J].Theoretical Computer Science, 2009, 410(33): 3065-3084. DOI:10.1016/j.tcs.2009.02.037.
[13] Galpin V. Hybrid semantics for Bio-PEPA[J]. Information and Computation, 2014, 236: 122-145. DOI:10.1016/j.ic.2014.01.016.
[14] Duguid A. An overview of the Bio-PEPA eclipse plug-in[C]//Eighth Workshop on Process Algebra and Stochastically Time Activities. Edinburgh, UK, 2009: 121-132.
[15] Zhao J, Zhou Y, Shuo L. A situation awareness model of system survivability based on variable fuzzy set[J]. Indonesian Journal of Electrical Engineering and Computer Science, 2012, 10(8): 2239-2246. DOI:10.11591/telkomnika.v10i8.1691.
[16] Chen T P, Cui W Y, Meng X R, et al. A method of IP network survivability evaluation method under performance monitoring[J]. Journal of Beijing University of Posts and Telecommunications, 2015, 38(6):20-23. DOI:10. 13190/j.jbupt.2015. 06.005. (in Chinese)
[17] Van Mieghem P, Omic J, Kooij R. Virus spread in networks[J]. IEEE/ACM Transactions on Networking, 2009, 17(1): 1-14. DOI:10.1109/tnet.2008.925623.
[18] Gillespie D T. Stochastic simulation of chemical kinetics[J]. Annual Review of Physical Chemistry, 2007, 58(1): 35-55. DOI:10.1146/annurev.physchem.58.032806.104637.

Memo

Memo:
Biography: Zhao Guosheng(1977—), male, doctor, professor, zgswj@163.com.
Foundation items: The National Natural Science Foundation of China(No.61202458, 61403109), the Natural Science Foundation of Heilongjiang Province of China(No.F2017021), Harbin Science and Technology Innovation Research Funds(No.2016RAQXJ036).
Citation: Zhao Guosheng, Ren Mengqi, Wang Jian, et al. Modeling and analysis of cloud computing system survivability based on Bio-PEPA[J].Journal of Southeast University(English Edition), 2018, 34(1):21-27.DOI:10.3969/j.issn.1003-7985.2018.01.004.
Last Update: 2018-03-20