|Table of Contents|

[1] Bao Leping, Fei Shumin, Zhai Junyong,. Exponential stabilization of distributed parameter switched systemsunder dwell time constraints [J]. Journal of Southeast University (English Edition), 2013, 29 (4): 389-394. [doi:10.3969/j.issn.1003-7985.2013.04.007]
Copy

Exponential stabilization of distributed parameter switched systemsunder dwell time constraints()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
29
Issue:
2013 4
Page:
389-394
Research Field:
Automation
Publishing date:
2013-12-20

Info

Title:
Exponential stabilization of distributed parameter switched systemsunder dwell time constraints
Author(s):
Bao Leping Fei Shumin Zhai Junyong
Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education, Southeast University, Nanjing 210096, China
School of Automation, Southeast University, Nanjing 210096, China
Keywords:
distributed parameter switched systems exponential stabilization multiple Lyapunov function linear operator inequalities dwell time
PACS:
TP13
DOI:
10.3969/j.issn.1003-7985.2013.04.007
Abstract:
The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the multiple Lyapunov function method, the exponential stabilization conditions are derived. These conditions are given in the form of linear operator inequalities where the decision variables are operators in the Hilbert space; while the stabilization properties depend on the switching rule. Being applied to the two-dimensional heat switched propagation equations with the Dirichlet boundary conditions, these linear operator inequalities are transformed into standard linear matrix inequalities. Finally, two examples are given to illustrate the effectiveness of the proposed results.

References:

[1] Lin H, Antsaklis P J. Stability and stabilizability of switched linear systems: a survey of recent results [J].IEEE Trans Automat Control, 2009, 54(2): 308-322.
[2] Curtain R F, Zwart H. An introduction to infinite dimensional linear system theory [M]. New York: Springer, 1995.
[3] Luo Z H, Guo B Z, Morgul O. Stability and stabilization for infinite dimensional systems with applications [M]. London: Springer, 1999.
[4] Liberzon D. Switching in systems and control [M]. Boston: Birkhauser, 2003.
[5] Liberzon D, Morse A S. Basic problems in stability and design of switched systems [J]. IEEE Contr Syst Mag, 1999, 19(10): 59-70.
[6] Decarlo R A, Branicky M S, Pettersson S, et al. Perspectives and results on the stability and stabilizability of hybrid systems[J]. Proceedings of IEEE, 2000, 88(7): 1069-1082.
[7] Sun Z, Ge S S. Switched linear systems: control and design [M]. Berlin: Springer-Verlag, 2004.
[8] Narendra K S, Balakrishnan J. A common Lyapunov function for stable LTI systems with commuting A-matrices [J]. IEEE Trans Automat Control, 1994, 39(12): 2469-2471.
[9] Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems [J]. IEEE Trans Automat Control, 1998, 43(4):186-200.
[10] Cheng D, Guo L. Stabilization of switched linear systems [J]. IEEE Trans Automat Control, 2005, 50(5): 661-666.
[11] Geromel J, Colaneri P. Stability and stabilization of continuous time switched linear systems [J]. SIAM Journal on Control and Optimization, 2006, 45(5):1915-1930.
[12] Chen Y, Fei S, Zhang K, et al. Control of switched linear systems with actuator saturation and its applications [J]. Mathematical and Computer Modelling, 2012, 56(1/2): 14-26.
[13] Allerhand L, Shaked U. Robust stability and stabilization of linear switched systems with dwell time [J]. IEEE Trans Automat Control, 2011, 56(2): 381-386.
[14] Farra N, Christofides P. Coordinating feedback and switching for control of spatially distributed processes [J]. Computers and Chemical Engineering, 2004, 28(1/2): 111-128.
[15] Sasane A. Stability of switching infinite-dimensional systems [J]. Automatica, 2005, 41(1): 75-78.
[16] Michel A, Sun Y. Stability of discontinuous cauchy problems in Banach space [J]. Nonlinear Analysis, 2006, 65(9): 1805-1832.
[17] Prieur C, Girard A, Witrant E. Lyapunov functions for switched linear hyperbolic systems [C]//The 4th IFAC Conference on Analysis and Design of Hybrid Systems. Eindhoven, Netherlands, 2012:382-387.
[18] Hante F, Sigalotti M. Converse Lyapunov theorems for switched systems in Banach and Hilbert Spaces [J]. SIAM Journal on Control and Optimization, 2011, 49(2): 752-770.
[19] Amin S, Hante F, Bayen A. Exponential stability of switched linear hyperbolic initial-boundary value problems [J]. IEEE Trans Automat Control, 2012, 57(2): 291-301.
[20] Ouzahra M. Global stabilization of semilinear systems using switching controls [J]. Automatica, 2012, 48(5): 837-843.
[21] Dong X, Wen R, et al. Feedback stabilization for a class of distributed parameter switched systems with time delay [J]. Journal of Applied Sciences—Electronics and Information Engineering, 2011, 29(1):92-96.
[22] Ahmed N U. Semigroup theory with applications to system and control [M]. New York: Longman Scientific Technical, 1991.
[23] Tucsnak M, Weiss G. Observation and control for operator semigroups [M]. Basel: Birkhauser Verlag, 2009.
[24] Chen Z. Partial differential equations[M].2nd Ed. Beijing: University of Science and Technology of China Press, 2002.(in Chinese)
[25] Fridman E, Orlov Y. Exponential stability of linear distributed parameter systems with time-varying delays [J]. Automatica, 2009, 45(1):194-201.
[26] Tai Z, Lun S. Absolute mean square exponential stability of Lur’e stochastic distributed parameter control systems [J]. Applied Mathematics Letters, 2012, 25(3): 115-119.

Memo

Memo:
Biographies: Bao Leping(1968—), female, graduate; Fei Shuming(corresponding author), male, doctor, professor, smfei@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.61273119, 61104068, 61374038), the Natural Science Foundation of Jiangsu Province(No.BK2011253).
Citation: Bao Leping, Fei Shumin, Zhai Junyong.Exponential stabilization of distributed parameter switched systems under dwell time constraints[J].Journal of Southeast University(English Edition), 2013, 29(4):389-394.[doi:10.3969/j.issn.1003-7985.2013.04.007]
Last Update: 2013-12-20