[1] Cheng C B, Lee E S. Fuzzy regression with radial basis function network[J]. Fuzzy Sets and Systems, 2001, 119(2): 291-301.
[2] Lu S W, Basar T. Robust nonlinear system identification using neural-network models[J]. IEEE Transactions on Neural Networks, 1998, 9(3): 407-429.
[3] Li Y, Qiang S, Zhuang X, et al. Robust and adaptive backstepping control for nonlinear systems using RBF neural networks[J]. IEEE Transactions on Neural Networks, 2004, 15(3): 693-701.
[4] Panda S S, Chakraborty D, Pal S K. Flank wear prediction in drilling using back propagation neural network and radial basis function network[J]. Applied Soft Computing, 2008, 8(2): 858-871.
[5] Rivas V M, Merelo J J, Castillo P A, et al. Evolving RBF neural networks for time-series forecasting with EvRBF[J]. Information Sciences, 2004, 165(3/4): 207-220.
[6] Wei H K, Song W Z, Li Q. A RBF network based online modeling method for real-time cost model in power plant[J]. Proceedings of the CSEE, 2004, 24(7): 246-252.(in Chinese)
[7] Kumar R, Ganguli R, Omkar S N. Rotorcraft parameter estimation using radial basis function neural network[J]. Applied Mathematics and Computation, 2010, 216(2): 584-597.
[8] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via EM algorithm[J]. Journal of the Royal Statistical Society B, 1977, 39(1): 1-38.
[9] Denoeux T. Maximum likelihood estimation from fuzzy data using the EM algorithm[J]. Fuzzy Sets and Systems, 2011, 183(1): 72-91.
[10] Zadeh L A. Probability measures of fuzzy events[J]. Journal of Mathematical Analysis and Applications, 1968, 23(2): 421-427.
[11] Hoppner F, Klawonn F. Improved fuzzy partitions for fuzzy regression model[J]. International Journal of Approximate Reasoning, 2003, 32(2/3): 85-102.