|Table of Contents|

[1] Liu Lu, Shan Liang, Jiang Chao, Dai Yuewei, et al. Parameter identification of the fractional-order systemsbased on a modified PSO algorithm [J]. Journal of Southeast University (English Edition), 2018, 34 (1): 6-14. [doi:10.3969/j.issn.1003-7985.2018.01.002]
Copy

Parameter identification of the fractional-order systemsbased on a modified PSO algorithm()
基于改进粒子群算法的分数阶系统参数辨识
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
34
Issue:
2018 1
Page:
6-14
Research Field:
Computer Science and Engineering
Publishing date:
2018-03-20

Info

Title:
Parameter identification of the fractional-order systemsbased on a modified PSO algorithm
基于改进粒子群算法的分数阶系统参数辨识
Author(s):
Liu Lu1 Shan Liang1 Jiang Chao2 Dai Yuewei1 Liu Chenglin3 Qi Zhidong1
1School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
2Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
3Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University, Wuxi 214122, China
刘璐1 单梁1 蒋超2 戴跃伟1 刘成林3 戚志东1
1南京理工大学自动化学院, 南京 210094; 2 Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; 3江南大学轻工过程先进控制教育部重点实验室, 无锡214122
Keywords:
particle swarm optimization Tent mapping parameter identification fractional-order systems passive congregation
粒子群优化 Tent映射 参数辨识 分数阶系统 被动聚集
PACS:
TP301.6
DOI:
10.3969/j.issn.1003-7985.2018.01.002
Abstract:
In order to better identify the parameters of the fractional-order system, a modified particle swarm optimization(MPSO)algorithm based on an improved Tent mapping is proposed. The MPSO algorithm is validated with eight classical test functions, and compared with the POS algorithm with adaptive time varying accelerators(ACPSO), the genetic algorithm(GA), and the improved PSO algorithm with passive congregation(IPSO). Based on the systems with known model structures and unknown model structures, the proposed algorithm is adopted to identify two typical fractional-order models. The results of parameter identification show that the application of average value of position information is beneficial to making full use of the information exchange among individuals and speeds up the global searching speed. By introducing the uniformity and ergodicity of Tent mapping, the MPSO avoids the extreme value of position information, so as not to fall into the local optimal value. In brief, the MPSO algorithm is an effective and useful method with a fast convergence rate and high accuracy.
为了更好地辨识分数阶系统的参数, 提出了一种基于Tent映射的改进粒子群算法(MPSO). 采用8个经典测试函数对MPSO算法的性能进行了测试, 并与自适应时变加速器算法(ACPSO)、改进的被动聚集粒子群算法(IPSO)以及遗传算法(GA)进行对比, 验证了所提算法的有效性.在已知模型结构和未知模型结构的基础上, 利用所提算法对2种典型分数阶模型进行参数辨识.参数辨识结果表明, 应用位置信息的平均值有利于充分共享个体间的信息, 从而能够加快全局搜索速度; Tent映射具有的均匀性和遍历性能够防止位置信息中极值的产生, 避免算法陷入局部最优.MPSO算法收敛速度快、精度高, 是一种有效且实用的方法.

References:

[1] Diethelm K. An efficient parallel algorithm for the numerical solution of fractional differential equations[J].Fractional Calculus and Applied Analysis, 2011, 14(3): 475-490. DOI:10.2478/s13540-011-0029-1.
[2] Gepreel K A. Explicit Jacobi elliptic exact solutions for nonlinear partial fractional differential equations [J]. Advances in Difference Equations, 2014, 2014(1): 1-14. DOI:10.1186/1687-1847-2014-286.
[3] Laskin N. Fractional market dynamics[J]. Physica A: Statistical Mechanics and Its Applications, 2000, 287(3): 482-492. DOI:10.1016/s0378-4371(00)00387-3.
[4] Ionescu C, Machado J T, de Keyser R. Fractional-order impulse response of the respiratory system[J]. Computers & Mathematics with Applications, 2011, 62(3): 845-854. DOI:10.1016/j.camwa.2011.04.021.
[5] Badri V, Tavazoei M S. Fractional order control of thermal systems: Achievability of frequency-domain requirements[J]. Nonlinear Dynamics, 2014, 80(4): 1773-1783. DOI:10.1007/s11071-014-1394-1.
[6] Vikhram Y R, Srinivasan L. Decentralised wide-area fractional order damping controller for a large-scale power system[J]. IET Generation, Transmission & Distribution, 2016, 10(5): 1164-1178. DOI:10.1049/iet-gtd.2015.0747.
[7] Safarinejadian B, Asad M, Sadeghi M S. Simultaneous state estimation and parameter identification in linear fractional order systems using coloured measurement noise [J]. International Journal of Control, 2016, 89(11): 2277-2296.
[8] Taleb M A, Béthoux O, Godoy E. Identification of a PEMFC fractional order model[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1499-1509. DOI:10.1016/j.ijhydene.2016.07.056.
[9] Storn R, Price K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[10] Tao C, Zhang Y, Jiang J J. Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm [J]. Physical Review E, 2007, 76(2): 016209. DOI:10.1103/PhysRevE.76.016209.
[11] Kennedy J, Eberhart R. Particle swarm optimization[J]. Proceedings of ICNN’95—International Conference on Neural Networks. Perth, Australia, 1995: 1942-1948. DOI:10.1109/icnn.1995.488968.
[12] Gupta R, Gairola S, Diwiedi S. Fractional order system identification and controller design using PSO [C]//2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with Their Impact on Humanity. Ghaziabad, India, 2015: 149-153. DOI:10.1109/cipech.2014.7019053.
[13] Hammar K, Djamah T, Bettayeb M. Fractional hammerstein system identification using particle swarm optimization [C]//2015 7th IEEE International Conference on Modelling, Identification and Control. Sousse, Tunisia, 2015: 1-6. DOI:10.1109/icmic.2015.7409483.
[14] Shi Y, Eberhart R C. A modified particle swarm optimizer [C]//1998 IEEE International Conference on Evolutionary Computation. Anchorage, USA, 1998: 69-73. DOI:10.1109/icec.1998.699146.
[15] Koulinas G, Kotsikas L, Anagnostopoulos K. A particle swarm optimization based hyper-heuristic algorithm for the classic resource constrained project scheduling problem [J]. Information Sciences, 2014, 277: 680-693. DOI:10.1016/j.ins.2014.02.155.
[16] Gong Y J, Li J J, Zhou Y, et al. Genetic learning particle swarm optimization[J]. IEEE Trans Cybern, 2016, 46(10): 2277-2290. DOI:10.1109/TCYB.2015.2475174.
[17] Aghababa M P. Optimal design of fractional-order PID controller for five bar linkage robot using a new particle swarm optimization algorithm[J]. Soft Computing, 2016, 20(10): 4055-4067. DOI:10.1007/s00500-015-1741-2.
[18] He S, Wu Q H, Wen J Y, et al. A particle swarm optimizer with passive congregation[J]. Biosystems, 2004, 78(1/2/3): 135-147. DOI:10.1016/j.biosystems.2004.08.003.
[19] Rossikhin Y A, Shitikova M V. Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results [J]. Applied Mechanics Reviews, 2009, 63(1): 010801. DOI:10.1115/1.4000563.
[20] Hartley T T, Lorenzo C F. Fractional-order system identification based on continuous order-distributions[J].Signal Processing, 2003, 83(11): 2287-2300. DOI:10.1016/s0165-1684(03)00182-8.
[21] Gaing Z L. A particle swarm optimization approach for optimum design of PID controller in AVR system[J].IEEE Transactions on Energy Conversion, 2004, 19(2): 384-391. DOI:10.1109/tec.2003.821821.

Memo

Memo:
Biographies: Liu Lu(1990—), male, Ph.D. candidate; Shan Liang(corresponding author), male, doctor, associate professor, shanliang@njust.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.61374153, 61473138, 61374133), the Natural Science Foundation of Jiangsu Province(No.BK20151130), Six Talent Peaks Project in Jiangsu Province(No.2015-DZXX-011), China Scholarship Council Fund(No.201606845005).
Citation: Liu Lu, Shan Liang, Jiang Chao, et al. Parameter identification of the fractional-order systems based on a modified PSO algorithm[J].Journal of Southeast University(English Edition), 2018, 34(1):6-14.DOI:10.3969/j.issn.1003-7985.2018.01.002.
Last Update: 2018-03-20