|Table of Contents|

[1] Lei Da, Chen Xuewu, Cheng Long, Luo Ronggen, et al. Analysis of passenger boarding time differencebetween adults and seniors based on smart card data [J]. Journal of Southeast University (English Edition), 2019, 35 (1): 97-102. [doi:10.3969/j.issn.1003-7985.2019.01.014]
Copy

Analysis of passenger boarding time differencebetween adults and seniors based on smart card data()
基于公交刷卡数据的老年乘客与普通成年乘客上车时间差别分析
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
35
Issue:
2019 1
Page:
97-102
Research Field:
Traffic and Transportation Engineering
Publishing date:
2019-03-30

Info

Title:
Analysis of passenger boarding time differencebetween adults and seniors based on smart card data
基于公交刷卡数据的老年乘客与普通成年乘客上车时间差别分析
Author(s):
Lei Da Chen Xuewu Cheng Long Luo Ronggen
School of Transportation, Southeast University, Nanjing 210096, China
雷达 陈学武 程龙 罗荣根
东南大学交通学院, 南京 210096
Keywords:
elderly passengers smart card data boarding time differences analysis of variance regression analysis marginal effect
老年人 公交刷卡数据 上车时间差别 方差分析 回归分析 边际效应
PACS:
U121
DOI:
10.3969/j.issn.1003-7985.2019.01.014
Abstract:
As an essential component of bus dwelling time, passenger boarding time has a significant impact on bus running reliability and service quality. In order to understand the passengers’ boarding process and mitigate passenger boarding time, a regression analysis framework is proposed to capture the difference and influential factors of boarding time for adult and elderly passengers based on smart card data from Changzhou. Boarding gap, the time difference between two consecutive smart card tapping records, is calculated to approximate passenger boarding time. Analysis of variance is applied to identify whether the difference in boarding time between adults and seniors is statistically significant. The multivariate regression modeling approach is implemented to analyze the influences of passenger types, marginal effects of each additional boarding passenger and bus floor types on the total boarding time at each stop. Results show that a constant difference exists in boarding time between adults and seniors even without considering the specific bus characteristics. The average passenger boarding time decreases when the number of passenger increases. The existence of two entrance steps delays the boarding process, especially for elderly passengers.
作为公交停车时间的重要组成, 乘客上车时间对公交运行可靠性及公交服务水平具有重大影响.为研究老年乘客与成年乘客上车时间差异以及影响上车时间长短的因素, 进而更好地理解乘客上车行为过程、减少乘客上车所花时间, 提出了一种乘客上车时间回归分析模型.通过计算常州公交IC刷卡连续记录之间的时间差, 得到了每位乘客上车时间的估计值, 定义为上车时间间隔.然后, 利用方差分析验证2种乘客的上车时间间隔是否存在显著差异, 最后, 建立回归模型分析乘客类型、每多一位乘客带来的边际效益及上车踏板数量对总上车时间的影响.研究结果表明, 即使不考虑公交车型特征, 普通成年乘客与老年乘客的上车时间间隔也存在一定差异;每一车次乘客平均上车时间随乘客数量的增加而减少;公交上车踏板数量越多, 乘客尤其是老年乘客上车所花的时间越长.

References:

[1] Guenthner R P, Hamat K. Transit dwell time under complex fare structure[J]. Journal of Transportation Engineering, 1988, 114(3): 367-379. DOI:10.1061/(asce)0733-947x(1988)114:3(367).
[2] Levine J C, Torng G. Dwell-time effects of low-floor bus design[J]. Journal of Transportation Engineering, 1994, 120(6): 914-929. DOI:10.1061/(asce)0733-947x(1994)120:6(914).
[3] Dorbritz R, Lüthi M, Weidmann U, et al. Effects of onboard ticket sales on public transport reliability[J]. Transportation Research Record: Journal of the Transportation Research Board, 2009, 2110: 112-119. DOI:10.3141/2110-14.
[4] Furth P G. Data analysis for bus planning and monitoring[M]. Washington, DC, USA: Transportation Research Board, 2000:5-15.
[5] Tirachini A. Bus dwell time: The effect of different fare collection systems, bus floor level and age of passengers[J]. Transportmetrica A: Transport Science, 2013, 9(1): 28-49. DOI:10.1080/18128602.2010.520277.
[6] Bertini R L, El-Geneidy A M. Modeling transit trip time using archived bus dispatch system data[J]. Journal of Transportation Engineering, 2004, 130(1): 56-67. DOI:10.1061/(asce)0733-947x(2004)130:1(56).
[7] Shalaby A, Eng P, Farhan A, et al. Bus travel time prediction model for dynamic operations control and passenger information systems[C]//The 82nd Annual Meeting of the Transportation Research Board. Washington DC, USA, 2002.
[8] Li M T, Zhao F, Chow L F, et al. Simulation model for estimating bus dwell time by simultaneously considering numbers of disembarking and boarding passengers[J]. Transportation Research Record: Journal of the Transportation Research Board, 2006, 1971: 59-65. DOI:10.3141/1971-09.
[9] González E M, Romana M G, Álvaro O M. Bus dwell-time model of main urban route stops[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012, 2274: 126-134. DOI:10.3141/2274-14.
[10] Widanapathiranage R, Bunker J M, Bhaskar A. Modelling the BRT station capacity and queuing for all stopping busway operation[J]. Public Transport, 2015, 7(1): 21-38. DOI:10.1007/s12469-014-0095-y.
[11] Sun L J, Tirachini A, Axhausen K W, et al. Models of bus boarding and alighting dynamics[J]. Transportation Research Part A: Policy and Practice, 2014, 69: 447-460. DOI:10.1016/j.tra.2014.09.007.
[12] Zhao K J, Sun L J, Jin J G, et al. Analysis of crowding effect on passengers’ movement time based on smart card data[C]//15th COTA International Conference of Transportation Professionals. Beijing, China, 2015:1479-1489. DOI:10.1061/9780784479292.136.
[13] Introduction of Changzhou Public Transportation Company [EB/OL].(2009-04-05)[2016-12-18]. http://www.czgj.cn/column1.aspx.
[14] Spiegelman C, Gates T. Post hoc quantile test for one-way analysis of variance using a double bootstrap method[J]. Transportation Research Record: Journal of the Transportation Research Board, 2005, 1908:19-25. DOI:10.3141/1908-03.

Memo

Memo:
Biographies: Lei Da(1993—), male, Ph.D. candidate; Chen Xuewu(corresponding author), female, doctor, professor, chenxuewu@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.51338003, 71801041).
Citation: Lei Da, Chen Xuewu, Cheng Long, et al. Analysis of passenger boarding time difference between adults and seniors based on smart card data[J].Journal of Southeast University(English Edition), 2019, 35(1):97-102.DOI:10.3969/j.issn.1003-7985.2019.01.014.
Last Update: 2019-03-20