|Table of Contents|

[1] Zhang Tao, Wei Haiguang, Mo Xutao,. Image denoising method with tree-structured group sparsemodeling of wavelet coefficients [J]. Journal of Southeast University (English Edition), 2019, 35 (3): 332-340. [doi:10.3969/j.issn.1003-7985.2019.03.009]
Copy

Image denoising method with tree-structured group sparsemodeling of wavelet coefficients()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
35
Issue:
2019 3
Page:
332-340
Research Field:
Image Processing
Publishing date:
2019-09-30

Info

Title:
Image denoising method with tree-structured group sparsemodeling of wavelet coefficients
Author(s):
Zhang Tao Wei Haiguang Mo Xutao
School of Mathematics and Physics, Anhui University of Technology, Ma’anshan 243000, China
Keywords:
local standard deviation group sparse image denoising mixed norm texture
PACS:
TP751
DOI:
10.3969/j.issn.1003-7985.2019.03.009
Abstract:
In order to enhance the image contrast and quality, inspired by the interesting observation that an increase in noise intensity tends to narrow the dynamic range of the local standard deviation(LSD)of an image, a tree-structured group sparse optimization model in the wavelet domain is proposed for image denoising. The compressed dynamic range of LSD caused by noise leads to a contrast reduction in the image, as well as the degradation of image quality. To equalize the LSD distribution, sparsity on the LSD matrix is enforced by employing a mixed norm as a regularizer in the image denoising model. This mixed norm introduces a coupling between wavelet coefficients and provides a tree-structured group scheme. The alternating direction method of multipliers(ADMM)and the fast iterative shrinkage-thresholding algorithm(FISTA)are applied to solve the group sparse model based on different cases. Several experiments are conducted to verify the effectiveness of the proposed model. The experimental results indicate that the proposed group sparse model can efficiently equalize the LSD distribution and therefore can improve the image contrast and quality.

References:

[1] Tikhonov A N. Regularization of incorrectly posed problems [J]. Soviet Mathematics Doklady, 1963, 4: 1624-1627.
[2] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J].Physica D: Nonlinear Phenomena, 1992, 60(1/2/3/4): 259-268. DOI:10.1016/0167-2789(92)90242-f.
[3] Buades A, Coll B, Morel J M. Nonlocal image and movie denoising[J].International Journal of Computer Vision, 2008, 76(2): 123-139. DOI:10.1007/s11263-007-0052-1.
[4] Ding D, Ram S, Rodriguez J J. Image inpainting using nonlocal texture matching and nonlinear filtering[J].IEEE Transactions on Image Processing, 2019, 28(4): 1705-1719. DOI:10.1109/tip.2018.2880681.
[5] Wang W, Li F, Ng M K. Structural similarity-based nonlocal variational models for image restoration[J].IEEE Transactions on Image Processing, 2019, 28(9): 4260-4272. DOI:10.1109/tip.2019.2906491.
[6] Zhang K, Zuo W, Chen Y J, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J].IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. DOI:10.1109/tip.2017.2662206.
[7] Jin K H, McCann M T, Froustey E, et al. Deep convolutional neural network for inverse problems in imaging[J].IEEE Transactions on Image Processing, 2017, 26(9): 4509-4522. DOI:10.1109/tip.2017.2713099.
[8] Starck J L, Elad M, Donoho D L. Image decomposition via the combination of sparse representations and a variational approach[J].IEEE Transactions on Image Processing, 2005, 14(10): 1570-1582. DOI:10.1109/tip.2005.852206.
[9] Cai J F, Osher S, Shen Z. Split bregman methods and frame based image restoration[J].Multiscale Modeling & Simulation, 2010, 8(2): 337-369. DOI:10.1137/090753504.
[10] Dong W S, Shi G M, Ma Y, et al. Image restoration via simultaneous sparse coding: Where structured sparsity meets Gaussian scale mixture[J].International Journal of Computer Vision, 2015, 114(2/3): 217-232. DOI:10.1007/s11263-015-0808-y.
[11] Zhang L, Zuo W. Image restoration: From sparse and low-rank priors to deep priors[J].IEEE Signal Processing Magazine, 2017, 34(5): 172-179. DOI:10.1109/msp.2017.2717489.
[12] Zhang J, Zhao D, Gao W. Group-based sparse representation for image restoration[J].IEEE Transactions on Image Processing, 2014, 23(8): 3336-3351. DOI:10.1109/tip.2014.2323127.
[13] Kowalski M. Sparse regression using mixed norms[J].Applied and Computational Harmonic Analysis, 2009, 27(3): 303-324. DOI:10.1016/j.acha.2009.05.006.
[14] Yang J Q, Zhu G P, Shi Y Q. Analyzing the effect of JPEG compression on local variance of image intensity[J].IEEE Transactions on Image Processing, 2016, 25(6): 2647-2656. DOI:10.1109/tip.2016.2553521.
[15] Li Z G, Zeng L, Xu Y F, et al. Level set method for image segmentation based on local variance and improved intensity inhomogeneity model[J].IET Image Processing, 2016, 10(12): 1007-1016. DOI:10.1049/iet-ipr.2016.0352.
[16] Meyer Y. Wavelet and operators [M].Cambridge: Cambridge University Pressing, 1992: 21-25.
[17] Zhang T, Fan Q B. Wavelet characterization of dyadic BMO norm and its application in image decomposition for distinguishing between texture and noise[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2011, 9(3): 445-457. DOI:10.1142/s0219691311004183.
[18] Boyd S. Distributed optimization and statistical learning via the alternating direction method of multipliers[J].Foundations and Trends�A9; in Machine Learning, 2010, 3(1): 1-122. DOI:10.1561/2200000016.
[19] Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J].IEEE Transactions on Image Processing, 2009, 18(11): 2419-2434. DOI:10.1109/tip.2009.2028250.

Memo

Memo:
Biography: Zhang Tao(1982— ), male, doctor, associate professor, zt9877@163.com.
Foundation items: The National Natural Science Foundation of China(No.61701004, 11504003), the Natural Science Foundation of Anhui Province(No.1708085QA15).
Citation: Zhang Tao, Wei Haiguang, Mo Xutao.Image denoising method with tree-structured group sparse modeling of wavelet coefficients[J].Journal of Southeast University(English Edition), 2019, 35(3):332-340.DOI:10.3969/j.issn.1003-7985.2019.03.009.
Last Update: 2019-09-20