[1] Main J A, Krenk S. Efficiency and tuning of viscous dampers on discrete systems[J].Journal of Sound and Vibration, 2005, 286(1/2): 97-122. DOI: 10.1016/j.jsv.2004.09.022.
[2] Caughey T K, O’Kelly M E J. Classical normal modes in damped linear dynamic systems[J].Journal of Applied Mechanics, 1965, 32(3): 583-588. DOI: 10.1115/1.3627262.
[3] Srikantha P A. On the necessary and sufficient conditions for the existence of classical normal modes in damped linear dynamic systems[J].Journal of Sound and Vibration, 2003, 264(3): 741-745. DOI: 10.1016/S0022-460X(02)01506-7.
[4] Hassanpour P A, Esmailzadeh E, Cleghorn W L, et al. Generalized orthogonality condition for beams with intermediate lumped masses subjected to axial force[J].Journal of Vibration and Control, 2010, 16(5): 665-683. DOI: 10.1177/1077546309106526.
[5] Warburton G B. Soil-structure interaction for tower structures[J].Earthquake Engineering & Structural Dynamics, 1978, 6(6): 535-556. DOI: 10.1002/eqe.4290060603.
[6] Wu J S, Lin T L. Free vibration analysis of a uniform cantilever beam with point masses by an analytical-and-numerical-combined method[J].Journal of Sound and Vibration, 1990, 136(2): 201-213. DOI: 10.1016/0022-460X(90)90851-P.
[7] Pacheco B M, Fujino Y, Sulekh A. Estimation curve for modal damping in stay cables with viscous damper[J].Journal of Structural Engineering, 1993, 119(6): 1961-1979. DOI: 10.1061/(asce)0733-9445(1993)119: 6(1961).
[8] GürgF6;ze M. On the eigenvalues of viscously damped beams, carrying heavy masses and restrained by linear and torsional springs[J].Journal of Sound and Vibration, 1997, 208(1): 153-158. DOI: 10.1006/jsvi.1997.1165.
[9] Wu J S, Chen D W. Dynamic analysis of a uniform cantilever beam carrying a number of elastically mounted point masses with dampers[J].Journal of Sound and Vibration, 2000, 229(3): 549-578. DOI: 10.1006/jsvi.1999.2504.
[10] Wu J J. Use of equivalent-damper method for free vibration analysis of a beam carrying multiple two degree-of-freedom spring-damper-mass systems[J].Journal of Sound and Vibration, 2005, 281(1/2): 275-293. DOI: 10.1016/j.jsv.2004.01.013.
[11] Chang T P. Forced vibration of a mass-loaded beam with a heavy tip body[J].Journal of Sound and Vibration, 1993, 164(3): 471-484. DOI: 10.1006/jsvi.1993.1229.
[12] Yang B. Exact receptances of nonproportionally damped dynamic systems[J].Journal of Vibration and Acoustics, 1993, 115(1): 47-52. DOI: 10.1115/1.2930313.
[13] GürgF6;ze M, Erol H. On the frequency response function of a damped cantilever simply supported in-span and carrying a tip mass[J].Journal of Sound and Vibration, 2002, 255(3): 489-500. DOI: 10.1006/jsvi.2001.4118.
[14] GürgF6;ze M, Erol H. Dynamic response of a viscously damped cantilever with a viscous end condition[J].Journal of Sound and Vibration, 2006, 298(1/2): 132-153. DOI: 10.1016/j.jsv.2006.04.042.
[15] Veletsos A S, Ventura C E. Modal analysis of non-classically damped linear systems[J].Earthquake Engineering & Structural Dynamics, 1986, 14(2): 217-243. DOI: 10.1002/eqe.4290140205.
[16] Foss K A. Co-ordinates which uncouple the equations of motion of damped linear dynamic systems[J].Journal of Applied Mechanics, 1958, 25(3): 361-364. DOI: 10.1115/1.4011828.
[17] Zhao Y P, Zhang Y M. Improved complex mode theory and truncation and acceleration of complex mode superposition[J].Advances in Mechanical Engineering, 2016, 8(10): 168781401667151. DOI: 10.1177/1687814016671510.
[18] de Domenico D, Ricciardi G. Dynamic response of non-classically damped structures via reduced-order complex modal analysis: Two novel truncation measures[J]. Journal of Sound and Vibration, 2019, 452: 169-190. DOI: 10.1016/j.jsv.2019.04.010.
[19] Oliveto G, Santini A, Tripodi E. Complex modal analysis of a flexural vibrating beam with viscous end conditions[J].Journal of Sound and Vibration, 1997, 200(3): 327-345. DOI: 10.1006/jsvi.1996.0717.
[20] Oliveti G, Santini A. Complex modal analysis of a continuous model with radiation damping[J].Journal of Sound and Vibration, 1996, 192(1): 15-33. DOI: 10.1006/jsvi.1996.0173.
[21] Fan Z J, Lee J H, Kang K H, et al. The forced vibration of a beam with viscoelastic boundary supports[J].Journal of Sound and Vibration, 1998, 210(5): 673-682. DOI: 10.1006/jsvi.1997.1353.
[22] Krenk S. Complex modes and frequencies in damped structural vibrations[J].Journal of Sound and Vibration, 2004, 270(4/5): 981-996. DOI: 10.1016/S0022-460X(03)00768-5.
[23] Impollonia N, Ricciardi G, Saitta F. Dynamic behavior of stay cables with rotational dampers[J].Journal of Engineering Mechanics, 2010, 136(6): 697-709. DOI: 10.1061/(asce)em.1943-7889.0000115.
[24] Alati N, Failla G, Santini A. Complex modal analysis of rods with viscous damping devices[J].Journal of Sound and Vibration, 2014, 333(7): 2130-2163. DOI: 10.1016/j.jsv.2013.11.030.
[25] Chen Y, McFarland D M, Spencer B F Jr, et al. A beam with arbitrarily placed lateral dampers: Evolution of complex modes with damping[J].Journal of Vibration and Control, 2018, 24(2): 379-392. DOI: 10.1177/1077546316641592.
[26] Jacquot R G. Random vibration of damped modified beam systems[J].Journal of Sound and Vibration, 2000, 234(3): 441-454. DOI: 10.1006/jsvi.1999.2894.
[27] Jacquot R G. The spatial average mean square motion as an objective function for optimizing damping in damped modified systems[J].Journal of Sound and Vibration, 2003, 259(4): 955-965. DOI: 10.1006/jsvi.2002.5209.