|Table of Contents|

[1] Jiang Qiao, Liu Xiaoxing, Ma Qianting, et al. A multilayer network model of the bankingsystem and its evolution [J]. Journal of Southeast University (English Edition), 2023, 39 (3): 233-239. [doi:10.3969/j.issn.1003-7985.2023.03.003]
Copy

A multilayer network model of the bankingsystem and its evolution()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
39
Issue:
2023 3
Page:
233-239
Research Field:
Economy and Management
Publishing date:
2023-09-20

Info

Title:
A multilayer network model of the bankingsystem and its evolution
Author(s):
Jiang Qiao1 Liu Xiaoxing1 2 Ma Qianting2 3
1 School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China
2 School of Economics and Management, Southeast University, Nanjing 211189, China
3 College of Finance, Nanjing Agricultural University, Nanjing 210095, China
Keywords:
multilayer network model banking system network evolutionary characteristics small-world characteristics dependency structure
PACS:
F830
DOI:
10.3969/j.issn.1003-7985.2023.03.003
Abstract:
A multilayer network model of the banking system is constructed based on the Pearson, Spearman, and Kendall correlations among stock returns. The three correlations correspond to the multilayer network’s Pearson, Spearman, and Kendall layers. This paper empirically analyzes the evolutionary characteristics of the multilayer network structure of the banking system from 2011 to 2020, using data from China’s listed banks. The following are the principal findings based on empirical research. Firstly, the large state-owned banks are more active within the banking system. Secondly, the interlayer correlation of the multilayer banking network exhibits volatility, with the Spearman and Kendall layers showing a higher correlation than the Pearson layer. Thirdly, the constructed bank multilayer network exhibits small-world characteristics. Fourthly, all bank nodes influence each layer of the banking multilayer network. The present research reveals the dependency structure between various correlations of bank yield fluctuations, which has a specific theoretical reference value for maintaining the banking system’s smooth operation.

References:

[1] Li S W, Xie Y W, Yang K, et al. Impact of multiplex network structures of banks on systemic risk[J]. Journal of Southeast University(Philosophy and Social Science), 2019, 21(4): 77-84, 147. DOI:10.13916/j.cnki.issn1671-511x.2019.04.009. (in Chinese)
[2] Maghyereh A I, Yamani E. Does bank income diversification affect systemic risk: New evidence from dual banking systems[J]. Finance Research Letters, 2022, 47: 102814. DOI: 10.1016/j.frl.2022.102814.
[3] Inaoka H, Takayasu H, Shimizu T, et al. Self-similarity of banking network[J].Physica A: Statistical Mechanics and Its Applications, 2004, 339(3/4): 621-634. DOI: 10.1016/j.physa.2004.03.011.
[4] Silva T C, de Souza S R S, Tabak B M. Network structure analysis of the Brazilian interbank market[J].Emerging Markets Review, 2016, 26: 130-152. DOI: 10.1016/j.ememar.2015.12.004.
[5] Leonidov A V, Rumyantsev E L. Default contagion risks in Russian interbank market[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 451: 36-48. DOI: 10.1016/j.physa.2015.12.130.
[6] Soram�E4;ki K, Bech M L, Arnold J, et al. The topology of interbank payment flows[J].Physica A: Statistical Mechanics and Its Applications, 2007, 379(1): 317-333. DOI: 10.1016/j.physa.2006.11.093.
[7] Becher C, Millard S, Soram�E4;ki K. The network topology of CHAPS sterling[J].SSRN Electronic Journal, 2008. DOI: 10.2139/ssrn.1319277.
[8] Boss M, Elsinger H, Summer M, et al. Network topology of the interbank market[J]. Quantitative Finance, 2004, 4(6): 677-684. DOI: 10.1080/14697680400020325.
[9] León C, Machado C, Sarmiento M. Identifying central bank liquidity super-spreaders in interbank funds networks[J]. Journal of Financial Stability, 2018, 35: 75-92. DOI: 10.1016/j.jfs.2016.10.008.
[10] Craig B, von Peter G. Interbank tiering and money center banks[J].Journal of Financial Intermediation, 2014, 23(3): 322-347. DOI: 10.1016/j.jfi.2014.02.003.
[11] Silva T C, de Souza S R S, Tabak B M. Network structure analysis of the Brazilian interbank market[J]. Emerging Markets Review, 2016, 26: 130-152. DOI: 10.1016/j.ememar.2015.12.004.
[12] in’t Veld D, van Lelyveld I. Finding the core: Network structure in interbank markets[J].Journal of Banking & Finance, 2014, 49: 27-40. DOI: 10.1016/j.jbankfin.2014.08.006.
[13] Iori G, De Masi G, Precup O V, et al. A network analysis of the Italian overnight money market[J].Journal of Economic Dynamics and Control, 2008, 32(1): 259-278. DOI: 10.1016/j.jedc.2007.01.032.
[14] Martinez-Jaramillo S, Alexandrova-Kabadjova B, Bravo-Benitez B, et al. An empirical study of the Mexican banking system’s network and its implications for systemic risk[J].Journal of Economic Dynamics and Control, 2014, 40: 242-265. DOI: 10.1016/j.jedc.2014.01.009.
[15] Langfield S, Liu Z J, Ota T. Mapping the UK interbank system[J].Journal of Banking & Finance, 2014, 45: 288-303. DOI: 10.1016/j.jbankfin.2014.03.031.
[16] Poledna S, Molina-Borboa J L, Martínez-Jaramillo S, et al. The multi-layer network nature of systemic risk and its implications for the costs of financial crises[J]. Journal of Financial Stability, 2015, 20: 70-81. DOI: 10.1016/j.jfs.2015.08.001.
[17] Bargigli L, di Iasio G, Infante L, et al. Interbank markets and multiplex networks: Centrality measures and statistical null models[M]// Interconnected Networks. Cham, Switzerland: Springer, 2016: 179-194.
[18] Aldasoro I, Alves I. Multiplex interbank networks and systemic importance: An application to European data[J].Journal of Financial Stability, 2018, 35: 17-37. DOI: 10.1016/j.jfs.2016.12.008.
[19] Berndsen R J, León C, Renneboog L. Financial stability in networks of financial institutions and market infrastructures[J].Journal of Financial Stability, 2018, 35: 120-135. DOI: 10.1016/j.jfs.2016.12.007.
[20] Hüser A C, Haaj G, Kok C, et al. The systemic implications of bail-in: A multi-layered network approach[J].Journal of Financial Stability, 2018, 38: 81-97. DOI: 10.1016/j.jfs.2017.12.001.
[21] Li L A, Ma Q T, He J M, et al. Co-loan network of Chinese banking system based on listed companies’ loan data[J]. Discrete Dynamics in Nature and Society, 2018, 2018: 1-7. DOI: 10.1155/2018/9565896.
[22] Musmeci N, Nicosia V, Aste T, et al. The multiplex dependency structure of financial markets[J]. Complexity, 2017, 2017: 1-13. DOI: 10.1155/2017/9586064.
[23] Liu Y Q, Mu Y, Chen K Y, et al. Daily activity feature selection in smart homes based on Pearson correlation coefficient[J].Neural Processing Letters, 2020, 51(2): 1771-1787. DOI: 10.1007/s11063-019-10185-8.
[24] Liu Q, Li C, Wanga V, et al. Covariate-adjusted Spearman’s rank correlation with probability-scale residuals[J].Biometrics, 2018, 74(2): 595-605. DOI: 10.1111/biom.12812.
[25] Valencia D, Lillo R E, Romo J. A Kendall correlation coefficient between functional data[J]. Advances in Data Analysis and Classification, 2019, 13(4): 1083-1103. DOI: 10.1007/s11634-019-00360-z.
[26] Boccaletti S, Bianconi G, Criado R, et al. The structure and dynamics of multilayer networks[J]. Physics Reports, 2014, 544(1): 1-122. DOI: 10.1016/j.physrep.2014.07.001.
[27] Battiston F, Nicosia V, Latora V. Structural measures for multiplex networks[J]. Physical Review E, 2014, 89(3): 032804. DOI: 10.1103/physreve.89.032804.
[28] Battiston F, Nicosia V, Latora V. The new challenges of multiplex networks: Measures and models[J]. The European Physical Journal Special Topics, 2017, 226(3): 401-416. DOI: 10.1140/epjst/e2016-60274-8.

Memo

Memo:
Biographies: Qiao Jiang(1972—), male, Ph. D. candidate; Ma Qianting(corresponding author), male, doctor, mqt2626@njau.edu.cn.
Foundation items: The National Natural Science Foundation of China(No. 72173018), the 71st General Program of China Postdoctoral Science Foundation(No. 2022M711649).
Citation: Jiang Qiao, Liu Xiaoxing, Ma Qianting. A multilayer network model of the banking system and its evolution[J].Journal of Southeast University(English Edition), 2023, 39(3):233-239.DOI:10.3969/j.issn.1003-7985.2023.03.003.
Last Update: 2023-09-20